Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins
Abstract
:1. Introduction
- (i)
- The development of an integrated GIS spatial analysis model that integrates all stages of the flood band identification methodology and related databases needed to identify vulnerability and risk of flooding;
- (ii)
- The development of GIS sub-models of spatial analysis based on UAV techniques for the acquisition of digital databases (DSM, maximum flood rate) useful in the hydraulic modeling of floodplains;
- (iii)
- The implementation of a hydraulic model for the delimitation of floodplains, flood water level, shear stress and flow rate, outlined as digital databases useful for the methodological development of the identification and digital mapping of flood risk;
- (iv)
- The development of a complex methodology for identifying flood risk based on information obtained as a result of the implementation of the hydraulic model.
- (v)
- Creating a web portal designed to inform the human component about the risk of floods, a portal based on the integration by digital mapping of databases obtained as a result of the implementation of the complex model of spatial analysis.
2. Materials and Methods
2.1. Study Area
2.2. Methodology and Database
3. Results
3.1. Acquisition of GIS and Alphanumeric Databases Based on UAV Techniques and Hydrological Calculation
3.2. Hydraulic Modeling for Delimitation of Floodplains and to Support Databases for Flood Risk Identification
3.3. Risk Assessment Methodology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chendeş, V.; Bălteanu, D.; Micu, D.; Sima, M.; Ion, M.B.; Grigorescu, I.; Persu, M.R.; Dragotă, C. A database design of major past flood events in Romania from national and international inventories. Air and Water Components of the Environment. In Proceedings of the Conference: Air and Water Components of the Environment, Cluj, Romania, 20–22 March 2015. [Google Scholar] [CrossRef]
- Amponsah, W.; Ayral, P.-A.; Boudevillain, B.; Bouvier, C.; Braud, I.; Brunet, P.; Delrieu, G.; Didon-Lescot, J.-F.; Gaume, E.; Lebouc, L.; et al. Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth Syst. Sci. Data 2018, 10, 1783–1794. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, H. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management. Water 2018, 10, 608. [Google Scholar] [CrossRef] [Green Version]
- Arshad, B.; Ogie, R.; Barthelemy, J.; Pradhan, B.; Verstaevel, N.; Perez, P. Computer Vision and IoT-Based Sensors in Flood Monitoring and Mapping: A Systematic Review. Sensors 2019, 19, 5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kam, P.M.; Aznar-Siguan, G.; Schewe, J.; Milano, L.; Ginnetti, J.; Willner, S.; McCaughey, J.W.; Bresch, D.N. Global warming and population change both heighten future risk of human displacement due to river floods. Environ. Res. Lett. 2021, 16, 044026. [Google Scholar] [CrossRef]
- Sayers, P.; Li, Y.; Galloway, G.; Penning-Rowsell, E.; Shen, F.; Wen, K.; Chen, Y.; Le Quesne, T. Flood Risk Management: A Strategic Approach. Edited by UNESCO. Paris. 2013. Available online: https://www.wwf.org.uk/strategic-water-management#flood-risk-management (accessed on 19 March 2021).
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 19 March 2021).
- National Research Council. Disaster Resilience: A National Imperative; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Directive 2007/60/EC. Available online: https://ec.europa.eu/environment/water/flood_risk/ (accessed on 20 March 2021).
- Sahay, A.; Kumar, A.A.; Pongpaichet, S.; Jain, R. Multimedia Rescue Systems for Floods. In Proceedings of the MEDES ‘17: The 9th International Conference on Management of Digital EcoSystems, Bangkok, Thailand, 7–10 November 2017; pp. 210–215. [Google Scholar] [CrossRef]
- Gooch, R.; Chandrasekar, V. Integration of real-time weather radar data and Internet of Things with cloud-hosted real-time data services for the geosciences. (CHORDS). In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4519–4521. [Google Scholar] [CrossRef]
- Martin, C.; Kamar, O.; Berzosa, I.; Badiola, J.L. Smart GIS platform that facilitates the digitalization of the integrated urban drainage system. Environ. Model. Softw. 2020, 123, 104568. [Google Scholar] [CrossRef]
- Da Silva, L.B.L.; Alencar, M.H.; de Almeida, A.T. Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. Int. J. Disaster Risk Reduct. 2020, 50, 101865. [Google Scholar] [CrossRef]
- Niedzielski, T.; Witek, M.; Spallek, W. Observing river stages using unmanned aerial vehicles. Hydrol. Earth Syst. Sci. 2016, 20, 3193–3205. [Google Scholar] [CrossRef] [Green Version]
- Koschitzki, R.; Schwalbe, E.; Krohnert, M.; Cardenas, C.; Maas, H. Multi-temporal photogrammetric analysis to monitoring the river Las Minas, Punta Arenas, Chile. IEEE Lat. Am. Trans. 2018, 16, 2481–2489. [Google Scholar] [CrossRef]
- Ștefanescu, V. Decision support system based on the history of flood and flash flood events in Romania. Nat. Hazards 2013, 65, 2331–2352. [Google Scholar] [CrossRef]
- Gavriletea, M.D. Catastrophe risk management in Romania and Transylvania’ specifics. Issues for national and local administrations. Econ. Res. Ekonomska Istraživanja 2017, 30, 761–776. [Google Scholar] [CrossRef] [Green Version]
- Margetts, H.; Dunleavy, P. The second wave of digital-era governance: A quasi-paradigm for government on the Web. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunleavy, P.; Margetts, H.; Boston, S.; Tinkler, J. New Public Management Is Dead—Lond Live Digital-Era Governance. J. Public Adm. Res. Theory 2006, 16, 467–497. [Google Scholar] [CrossRef] [Green Version]
- Verma, K.K.; Shrivastava, N.; Patel, A.K.; Pandey, A. Status of E-governance and E-service in India. In Proceedings of the 2017 2nd International Conference for Convergence in Technology, Mumbai, India, 7–9 April 2017. [Google Scholar] [CrossRef]
- Hognogi, G.-G.; Pop, A.-M.; Marian-Potra, A.-C.; Someșfălean, T. The Role of UAS–GIS in Digital Era Governance. A Systematic Literature Review. Sustainability 2021, 13, 11097. [Google Scholar] [CrossRef]
- Young, M.M. Implementation of Digital-Era Governance: The Case of Open Data in U.S. Cities. Public Adm. Rev. 2020, 80, 305–315. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Hayakawa, Y.; Nex, F.; Remondino, F.; Tarolli, P. Review article: The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat. Hazards Earth Syst. Sci. 2018, 18, 1079–1096. [Google Scholar] [CrossRef] [Green Version]
- Antoine, R.; Lopez, T.; Tanguy, M.; Lissak, C.; Gailler, L.; Labazuy, P. Geoscientists in the Sky: Unmanned Aerial Vehicles. Surv. Geophys. 2020, 41, 1285–1321. [Google Scholar] [CrossRef]
- Yu, M.; Yang, C.; Li, Y. Big Data in Natural Disaster Management: A Review. Geosciences 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.N.I.; Peng, Y.; Yiran, C.; Shouse, R.C. Disaster resilience through big data: Way to environmental sustainability. Int. J. Disaster Risk Reduct. 2020, 51, 101769. [Google Scholar] [CrossRef]
- Jeziorska, J. UAS for Wetland Mapping and Hydrological Modeling. Remote Sens. 2019, 11, 1997. [Google Scholar] [CrossRef] [Green Version]
- Díez-Herrero, A.; Garrote, J. Flood Risk Analysis and Assessment, Applications and Uncertainties: A Bibliometric Review. Water 2020, 12, 2050. [Google Scholar] [CrossRef]
- Salmoral, G.; Rivas Casado, M.; Muthusamy, M.; Butler, D.; Menon, P.P.; Leinster, P. Guidelines for the Use of Unmanned Aerial Systems in Flood Emergency Response. Water 2020, 12, 521. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Luppichini, M.; Favalli, M.; Isola, I.; Nannipieri, L.; Giannecchini, R.; Bini, M. Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy). Remote Sens. 2019, 11, 1630. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, M.; Paron, P.; Reali, A.; Juizo, D.; Manane, J.; Brandimarte, L. Testing UAV-derived topography for hydraulic modelling in a tropical environment. Nat. Hazards 2020, 103, 139–163. [Google Scholar] [CrossRef]
- Gomez, C.; Purdie, H. Point cloud technology and 2D computational flow dynamic modeling for rapid hazards and disaster risk appraisal on Yellow Creek fan, Southern Alps of New Zealand. Prog. Earth Planet Sci. 2018, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Șerban, G.; Rus, I.; Vele, D.; Brețcan, P.; Alexe, M.; Petrea, D. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the north-east of Apuseni Mountains, Transylvania. Nat. Hazards 2016, 82, 1817–1832. [Google Scholar] [CrossRef]
- Mourato, S.; Fernandez, P.; Pereira, L.; Moreira, M. Improving a DSM Obtained by Unmanned Aerial Vehicles for Flood Modelling. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 022014. [Google Scholar] [CrossRef]
- Bates, J.; Chakraborty, T. Flood Risk Assessment and Mitigation Using Small Unmanned Aircraft Data. In Proceedings of the 22nd AGILE Conference on Geo-information Science, Stichting AGILE 2019, Limassol, Cyprus, 17–20 June 2019; Available online: https://agile-online.org/programme-2019/accepted-papers-and-posters-2019 (accessed on 10 December 2021).
- Diakakis, M.; Andreadakis, E.; Nikolopoulos, E.I.; Spyrou, N.I.; Gogou, M.E.; Deligiannakis, G.; Katsetsiadou, N.K.; Antoniadis, Z.; Melaki, M.; Georgakopoulos, A.; et al. An integrated approach of ground and aerial observations in flash flood disaster investigations. The case of the 2017 Mandra flash flood in Greece. Int. J. Disaster Risk Reduct. 2019, 33, 290–309. [Google Scholar] [CrossRef]
- Andreadakis, E.; Diakakis, M.; Vassilakis, E.; Deligiannakis, G.; Antoniadis, A.; Andriopoulos, P.; Spyrou, N.I.; Nikolopoulos, E.I. Unmanned Aerial Systems-Aided Post-Flood Peak Discharge Estimation in Ephemeral Streams. Remote Sens. 2020, 12, 4183. [Google Scholar] [CrossRef]
- Karamuz, E.; Romanowicz, R.I.; Doroszkiewicz, J. The use of unmanned aerial vehicles in flood hazard assessment. J. Risk Flood Manag. 2020, 13, e12622. [Google Scholar] [CrossRef]
- Forbes, B.T.; DeBenedetto, G.P.; Dickinson, J.E.; Bunch, C.E.; Fitzpatrick, F.A. Using Small Unmanned Aircraft Systems for Measuring Post-Flood High-Water Marks and Streambed Elevations. Remote Sens. 2020, 12, 1437. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Lou, H.; Wang, P.; Wang, J.; Ren, X. Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions. Remote Sens. 2020, 12, 1610. [Google Scholar] [CrossRef]
- Mourato, S.; Fernandez, P.; Marques, F.; Rocha, A.; Pereira, L. An interactive Web-GIS fluvial flood forecast and alert system in operation in Portugal. Int. J. Disaster Risk Reduct. 2021, 58, 102201. [Google Scholar] [CrossRef]
- Urzica, A.; Mihu-Pintilie, A.; Hutanu, E.; Ghindaoanu, B.V.; Albu, L.M. Using Gis Methods for Modelling Exceptional Flood Events in Baseu River Basin, ne Romania. In Proceedings of the International Scientific Conference GEOBALCANICA 2018, Ohrid, Macedonia, 15–16 May 2018; pp. 463–471. [Google Scholar] [CrossRef]
- Yalcin, E. Two-dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: A case study of Kirsehir, Turkey. J. Flood Risk Manag. 2019, 12, e12499. [Google Scholar] [CrossRef]
- Arseni, M.; Rosu, A.; Calmuc, M.; Calmuc, V.A.; Iticescu, C.; Georgescu, L.P. Development of Flood Risk and Hazard Maps for the Lower Course of the Siret River, Romania. Sustainability 2020, 12, 6588. [Google Scholar] [CrossRef]
- Kastridis, A.; Kirkenidis, C.; Sapountzis, M. An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post-flood surveys and unmanned aerial vehicles. Hydrol. Process. 2020, 34, 4920–4939. [Google Scholar] [CrossRef]
- Psomiadis, E.; Tomanis, L.; Kavvadias, A.; Soulis, K.X.; Charizopoulos, N.; Michas, S. Potential Dam Breach Analysis and Flood Wave Risk Assessment Using HEC-RAS and Remote Sensing Data: A Multicriteria Approach. Water 2021, 13, 364. [Google Scholar] [CrossRef]
- Huţanu, E.; Mihu-Pintilie, A.; Urzica, A.; Paveluc, L.E.; Stoleriu, C.C.; Grozavu, A. Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water 2020, 12, 1624. [Google Scholar] [CrossRef]
- Korjenic, A.; Hrelja, E.; Sivac, A.; Banda, A. Application of Gis in the Assessment of Flood Risk in the Region Zenica—Doboj Canton. Geogr. Tech. 2021, 16, 80–94. [Google Scholar] [CrossRef]
- Pal, S.; Singha, P. Analyzing sensitivity of flood susceptible model in a flood plain river basin. Geocarto Int. 2021. [Google Scholar] [CrossRef]
- Toschi, I.; Remondino, F.; Kellenberger, T.; Streilein, A. A Survey of Geomatics Solutions for the Rapid Mapping of Natural Hazards. Photogramm. Eng. Remote Sens. 2017, 83, 843–859. [Google Scholar] [CrossRef]
- Anders, N.; Smith, M.; Suomalainen, J.; Cammeraat, E.; Valente, J.; Keesstra, S. Impact of flight altitude and cover orientation on Digital Surface Model (DSM) accuracy for flood damage assessment in Murcia (Spain) using a fixed-wing UAV. Earth Sci. Inform. 2020, 13, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; Marcial-Pabloa, M.d.J. Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach Geomatics. Nat. Hazards Risk 2020, 11, 906–927. [Google Scholar] [CrossRef]
- Xia, J.; Falconer, R.A.; Lin, B.; Tan, G. Modelling flash flood risk in urban areas. Water Manag. 2011, 164, 267–282. [Google Scholar] [CrossRef]
- Muthusamy, M.; Rivas Casado, M.; Salmoral, G.; Irvine, T.; Leinster, P. A Remote Sensing Based Integrated Approach to Quantify the Impact of Fluvial and Pluvial Flooding in an Urban Catchment. Remote Sens. 2019, 11, 577. [Google Scholar] [CrossRef] [Green Version]
- Leitão, J.P.; de Sousa, L.M. Towards the optimal fusion of high-resolution Digital Elevation Models for detailed urban flood assessment. J. Hydrol. 2018, 561, 651–661. [Google Scholar] [CrossRef]
- Laudan, J.; Rözer, V.; Sieg, T.; Vogel, K.; Thieken, A.H. Damage assessment in Braunsbach 2016: Data collection and analysis for an improved understanding of damaging processes during flash floods. Nat. Hazards Earth Syst. Sci. 2017, 17, 2163–2179. [Google Scholar] [CrossRef] [Green Version]
- Amadio, M.; Mysiak, J.; Carrera, L.; Carrera, L.; Koks, E. Improving flood damage assessment models in Italy. Nat. Hazards 2016, 82, 2075–2208. [Google Scholar] [CrossRef] [Green Version]
- Chartier, M.M. Recherches Geographyques sur des basins-versants. Bulletin de l’Association de Géographes Français 1966, 348–349, 36–42. [Google Scholar] [CrossRef]
- Cocean, P. Rolul fenomenelor orajoase (tunetul, trăznetul) în declanșarea alunecărilor de teren. Revista de Geomorfologie 2006, 8, 109–114. [Google Scholar]
- Cocean, P.; Cocean, G. Cauzele și efectele viiturii catastrofale de la Târlișua, județul Bistrița-Năsăud, din 20 iunie 2006. Studia Universitatis Babes-Bolyai Geographia 2007, LII, 47–55. Available online: http://www.studia.ubbcluj.ro/download/pdf/252.pdf (accessed on 12 December 2021).
- Șerban, G.; Selagea, H.; Máthé, E.; Hognogi, G. Efecte Produse de Viitura Din 20.06.2006 în Bazinul Râului Ilișua (Bazinul Someșul Mare). In Proceedings of the Conference: ”Air and Water—Components of the Environment”, Cluj, Romania, 19–20 March 2010; pp. 156–165. [Google Scholar]
- Arghiuş, V.; Ozunu, A.; Samara, I.; Roşian, G. Results of the post flash flood disaster investigations in the Transylvanian Depression (Romania) during the last decade (2001–2010). Nat. Hazards Earth Syst. Sci. 2014, 14, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Chendeș, V.; Rădulescu, D.; Rândaşu, S.; Ion, M.B.; Achim, D.; Preda, A. Aspecte metodologice privind realizarea hărților de risc la inundații raportate în cadrul Directivei 2007/60/EC. Hidrotehnica 2014, 59, 14–27. [Google Scholar]
- Hognogi, G.; Nicula, G.; Cocean, G. Flash Floods in the Ilișua Basin. In Proceedings of the Conference: ”Air and Water—Components of the Environment”, Cluj, Romania, 18–19 March 2011; pp. 465–472. [Google Scholar]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Grecu, F.; Zaharia, L.; Ioana-Toroimac, G.; Armas, I. Floods and Flash-Floods Related to River Channel Dynamics. In Landform Dynamics and Evolution in Romania; Radoane, M., Vespremeanu-Stroe, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 821–844. [Google Scholar] [CrossRef]
- Albano, R.; Crăciun, I.; Mancusi, L.; Sole, A.; Ozunu, A. Flood Damage Assessment and Uncertainty Analysis: The Case Study of 2006 Flood in Ilisua Basin in Romania. Carpathian J. Earth Environ. Sci. 2017, 12, 335–346. [Google Scholar]
- Şerban, G.; Hognogi, G.; Stoica, F. The 05.06.2012 Slope Flood Runoff in The Lower Basin of Ilişua River—Causes, Effects and Future Measures. In Proceedings of the Conference: ”Air and Water—Components of the Environment”, Cluj, Romania, 22–23 March 2013; pp. 143–150. Available online: http://aerapa.conference.ubbcluj.ro/2013/pdf/20%20Serban%20Hognog%20i%20%20Stoica%20143_150.pdf (accessed on 12 December 2021).
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Quirogaa, V.M.; Kurea, S.; Udoa, K.; Manoa, A. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua 2016, 3, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, J.; Bernsteinová, J.; Miřijovský, J. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring. Water 2017, 9, 861. [Google Scholar] [CrossRef]
- Asitatikie, A.N.; Kifelew, M.S.; Shumey, E.E. Flood inundation modeling using HEC-RAS: The case of downstream Gumara river, Lake Tana sub basin, Ethiopia. Geocarto Int. 2021. [Google Scholar] [CrossRef]
- Milanesi, L.; Pilotti, M. Coupling Flood Propagation Modeling and Building Collapse in Flash Flood Studies. J. Hydraul. Eng. 2021, 147, 04021047. [Google Scholar] [CrossRef]
- Garack, S.; Ortlepp, R. Using hydro-morphological assessment parameters to estimate the flood-induced vulnerability of watercourses—A methodological approach across three spatial scales in Germany and the Czech Republic. River Res. Appl. 2022. [Google Scholar] [CrossRef]
- Worley, L.C.; Underwood, K.L.; Vartanian, N.L.V.; Dewoolkar, M.M.; Matt, J.E.; Rizzo, D.M. Semi-automated hydraulic model wrapper to support stakeholder evaluation: A floodplain reconnection study using 2D hydrologic engineering center’s river analysis system. River Res. Appl. 2022, 38, 799–809. [Google Scholar] [CrossRef]
- Lazzarin, T.; Viro, D.P.; Molinari, D.; Ballio, F.; Defina, A. Flood damage functions based on a single physics- and data-based impact parameter that jointly accounts for water depth and velocity. J. Hidrol. 2022, 607, 554–568. [Google Scholar] [CrossRef]
- Kidová, A.; Radecki-Pawlik, A.; Rusnák, M. Hydromorphological evaluation of the river training impact on a multi-thread river system (Belá River, Carpathians, Slovakia). Sci. Rep. 2021, 11, 6289. [Google Scholar] [CrossRef]
- Aye, Z.C.; Sprague, T.; Cortes, V.J.; Prenger-Berninghoff, K.; Jaboyedoff, M.; Derron, M.-H. A collaborative (web-GIS) framework based on empirical data collected from three case studies in Europe for risk management of hydro-meteorological hazards. Int. J. Disaster Risk Reduct. 2016, 15, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Lagmay, A.M.F.A.; Racoma, B.A.; Aracan, K.A.; Alconis-Ayco, J.; Saddi, I.L. Disseminating near-real-time hazards information and flood maps in the Philippines through Web-GIS. J. Environ. Sci. 2017, 59, 13–23. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I. The Web-GIS TRIG Eau Platform to Assess Urban Flood Mitigation by Domestic Rainwater Harvesting Systems in Two Residential Settlements in Italy. Sustainability 2021, 13, 7241. [Google Scholar] [CrossRef]
- Chaudhuri, C.; Gray, A.; Robertson, C. InundatEd-v1.0: A height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system. Geosci. Model Dev. 2021, 14, 3295–3315. [Google Scholar] [CrossRef]
- Coveney, S.; Roberts, K. Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 2017, 38, 3472–3491. [Google Scholar] [CrossRef] [Green Version]
- Sestras, P. Methodological and On-Site Applied Construction Layout Plan with Batter Boards Stake-Out Methods Comparison: A Case Study of Romania. Appl. Sci. 2021, 11, 4331. [Google Scholar] [CrossRef]
- Kelman, I.; Spence, R. An overview of flood actions on buildings. Eng. Geol. 2004, 73, 297–309. [Google Scholar] [CrossRef]
- Jansen, L.; Korswagen, P.A.; Bricker, J.D.; Pasterkamp, S.; de Bruijn, K.M. Experimental determination of pressure coefficients for flood loading of walls of Dutch terraced houses. Eng. Struct. 2020, 216, 110647. [Google Scholar] [CrossRef]
- Postacchini, M.; Zitti, G.; Giordano, E.; Clementi, F.; Darvini, G.; Lenci, S. Flood impact on masonry buildings: The effect of flow characteristics and incidence angle. J. Fluids Struct. 2019, 88, 130–144. [Google Scholar] [CrossRef]
- Villanueva, V.R.; Castellet, E.B.; Díez-Herrero, A.M.; Bodoque, J.M.; Sánchez-Juny, M. Two-dimensional modelling of large wood transport during flash floods. Earth Surf. Processes Landf. 2014, 35, 438–449. [Google Scholar] [CrossRef]
- Willems, P.; Timebe, L.; Thompson, S.; Campling, P.; Vanneuville, W. FAME: Flood risk and damage assessment using modelling and earth observation techniques. In Proceedings of the Conference: IMUG 2003: International Conference on Application of Integrated Modelling, Tilburg, The Netherlands, 23–25 April 2003; Available online: http://due.esrin.esa.int/page_project32.php (accessed on 26 February 2022).
- Flood Hazard Mapping Manual in Japan. Flood Control Division, River Bureau, Ministry of Land, Infrastructure and Transport (MLIT) 2005. Available online: https://www.pwri.go.jp/icharm/publication/pdf/2005/flood_hazard_mapping_manual.pdf (accessed on 20 March 2021).
- Udmale, P.; Tachikawa, Y.; Kobayashi, K.; Sayama, T. Flood Hazard Mapping in Japan. In Catalogue of Hydrologic Analysis for Asia and the Pacific: Volume 1, Flood Hazard Mapping; Kobayashi, K., Sutapa, I.D.A., Tabios, G.Q., Tachikawa, Y., Thulstrup, H., Eds.; UNESCO-IHP: Paris, France, 2019; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380002 (accessed on 2 May 2022).
- Bilașco, Ș.; Roșca, S.; Fodorean, I.; Vescan, I.; Filip, S.; Petrea, D. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models. Front. Earth Sci. 2018, 12, 311–324. [Google Scholar] [CrossRef]
- Kuhlicke, C.; Albert, C.; Bachmann, D.; Birkmann, J.; Borchardt, D.; Fekete, A.; Greiving, S.; Hartmann, T.; Hansjürgens, B.; Jüpner, R.; et al. Five Principles for Climate-Proof Municipalities and Cities. 2021. Available online: https://www.ufz.de/index.php?en=40406 (accessed on 1 March 2022).
- Seier, G.; Stangl, J.; Schöttl, S.; Sulzer, W.; Sass, O. UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria. Int. J. Remote Sens. 2017, 38, 2903–2920. [Google Scholar] [CrossRef]
- Perumal, P.S.; Raj, A.S.A.; Bharathi, B.M.S.; Raju, G.M.; Yogeswari, K. UAV Assisted Automated Remote Monitoring and Control System for Smart Water Bodies. In Proceedings of the 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), Tindivanam, India, 3–4 February 2017; pp. 116–120. [Google Scholar] [CrossRef]
- Rizzo, A.; Banovec, P.; Cilenšek, A.; Rianna, G.; Santini, M. An Innovative Tool for the Management of the Surface Drinking Water Resources at European Level: GOWARE—Transnational Guide Towards an Optimal WAter REgime. Water 2020, 12, 370. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, L. Scenario-Based Strategy in Practice: A Framework. Adv. Dev. Human Resour. 2008, 10, 216–239. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Jonidi Jafari, A.; Nekoei-Moghadam, M.; Goharinezhad, S. The use of uncertain scenarios in disaster risk reduction: A systematic review. Foresight 2019, 21, 409–418. [Google Scholar] [CrossRef]
- Strong, K.; Carpenter, O.; Ralph, D. Scenario Best Practices: Developing Scenarios for Disaster Risk Reduction. Cambridge Centre for Risk Studies at the University of Cambridge Judge Business School and Lighthill Risk Network. 2020. Available online: www.jbs.cam.ac.uk/risk (accessed on 28 February 2022).
- Lu, M.; Liao, X.; Yue, H.; Huang, Y.; Ye, H.; Xu, C.; Huang, S. Optimizing distribution of droneports for emergency monitoring of flood disasters in China. J. Flood Risk Manag. 2020, 13, e12593. [Google Scholar] [CrossRef]
- Țîncu, R.; Zêzere, J.L.; Crăciun, I.; Lazăr, G.; Lazăr, I. Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania. Land Use Policy 2019, 95, 103881. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Török, I. Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania. Sustainability 2018, 10, 3780. [Google Scholar] [CrossRef] [Green Version]
- Tammar, A.; Abosuliman, S.S.; Rahaman, K.R. Social Capital and Disaster Resilience Nexus: A Study of Flash Flood Recovery in Jeddah City. Sustainability 2020, 12, 4668. [Google Scholar] [CrossRef]
- Hochrainer-Stigler, S.; Laurien, F.; Velev, S.; Keating, A.; Mechler, R. Standardized disaster and climate resilience grading: A global scale empirical analysis of community flood resilience. J. Environ. Manag. 2020, 276, 84–86. [Google Scholar] [CrossRef]
- Laurien, F.; Hochrainer-Stigler, S.; Keating, A.; Campbell, K.; Mechler, R.; Czajkowski, J. A typology of community flood resilience. Reg. Environ. Change 2020, 20, 24. [Google Scholar] [CrossRef] [Green Version]
- Hysa, A.; Spalevic, V.; Dudic, B.; Roșca, S.; Kuriqi, A.; Bilașco, Ș.; Sestras, P. Utilizing the Available Open-Source Remotely Sensed Data in Assessing the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in Romania. Remote Sens. 2021, 13, 2737. [Google Scholar] [CrossRef]
- Salagean, T.; Rusu, T.; Onose, D.; Farcas, R.; Duda, B.; Sestras, P. The use of laser scanning technology in land monitoring of mining areas. Carpathian J. Earth Environ. Sci. 2016, 11, 565573. [Google Scholar]
- Hänsel, P.; Langel, S.; Schindewolf, M.; Kaiser, A.; Buchholz, A.; Böttcher, F.; Schmidt, J. Prediction of Muddy Floods Using High-Resolution Radar Precipitation Forecasts and Physically-Based Erosion Modeling in Agricultural Landscapes. Geosciences 2019, 9, 401. [Google Scholar] [CrossRef] [Green Version]
- Bilașco, Ș.; Roșca, S.; Vescan, I.; Fodorean, I.; Dohotar, V.; Sestras, P. A GIS-Based Spatial Analysis Model Approach for Identification of Optimal Hydrotechnical Solutions for Gully Erosion Stabilization. Case Study. Appl. Sci. 2021, 11, 4847. [Google Scholar] [CrossRef]
- Costea, A.; Bilasco, S.; Irimus, I.-A.; Rosca, S.; Vescan, I.; Fodorean, I.; Sestras, P. Evaluation of the Risk Induced by Soil Erosion on Land Use. Case Study: Guruslău Depression. Sustainability 2022, 14, 652. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Gebrehiwot, A.A. Flood Extent Mapping: An Integrated Method Using Deep Learning and Region Growing Using UAV Optical Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2127–2135. [Google Scholar] [CrossRef]
- La Salandra, M.; Miniello, G.; Nicotri, S.; Italiano, A.; Donvito, G.; Maggi, G. Generating UAV High-Resolution Topographic Data within a FOSS Photogrammetric Workflow Using High-Performance Computing Clusters. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102600. [Google Scholar] [CrossRef]
- Hackl, J.; Adey, B.T.; Woźniak, M.; Schümperlin, O. Use of Unmanned Aerial Vehicle Photogrammetry to Obtain Topographical Information to Improve Bridge Risk Assessment. J. Infrastruct. Syst. 2018, 24, 04017041. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Jenkins, S.; Seddon, N.; Allen, M.; Lewis, S.L.; Wheeler, C.E.; Griscom, B.W.; Malhi, Y. Nature-based solutions can help cool the planet—if we act now. Nature 2021, 593, 191–194. [Google Scholar] [CrossRef]
- Raška, P. On Epistemic Dissonance: Contesting the Transdisciplinary Disaster Risk Reduction Education, Research, and Practices. Front. Earth Sci. 2022, 9, 818361. [Google Scholar] [CrossRef]
- Albagli, S.; Iwama, A.Y. Citizen science and the right to research: Building local knowledge of climate change impacts. Humanit. Soc. Sci. Commun. 2022, 9, 39. [Google Scholar] [CrossRef]
- Bogdan, E.A.; Beckie, M.A.; Caine, K.J. Making room for nature? Applying the Dutch Room for the River approach to flood risk management in Alberta, Canada. Int. J. River Basin Manag. 2020. [Google Scholar] [CrossRef]
- Kreibich, H.; de Ruiter, M.C.; Goda, K.; Keiler, M.; Suppasri, A.; Malamud, B.D. Critical research in the water-related multi-hazard field. Nat. Sustain. 2022, 5, 90–91. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactionsof natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef] [Green Version]
- Raška, P.; Bezak, N.; Ferreira, C.C.C.; Kalantari, Z.; Banasik, K.; Bertola, M.; Bourke, M.; Cerdà, A.; Davids, P.; de Brito, M.M.; et al. Identifying barriers for nature-based solutions in flood risk management: An interdisciplinary overview using expert community approach. J. Environ. Manag. 2022, 310, 114725. [Google Scholar] [CrossRef] [PubMed]
No. | Name | Structure | Type | Attributes |
---|---|---|---|---|
1 | UAV photographs | Raster/.jpg | primary | |
2 | GCP | Vector/point | primary | XYZ coordinates |
3 | CP | Vector/point | primary | XYZ coordinates |
4 | Dense Points Cloud | Vector/point | modeled | RGB, XYZ |
5 | DSM | Raster/tif | modeled | Z |
6 | Orthomosaic | Raster/tif | modeled | - |
7 | Maximum flow | Numerical | calculated | m3/s |
8 | Cross-sectional profiles | Vector | primary | - |
9 | Riverbed banks | Vector/line | primary | - |
10 | Thalweg | Vector/line | primary | - |
11 | The Manning coefficient | Numerical | calculated | - |
12 | Slope | Numerical | calculated | - |
13 | Water surface elevation | Raster/tif | modeled | m |
14 | Shear stress | Raster/tif | modeled | Pa/m2/s |
15 | Velocity | Raster/tif | modeled | m/s |
16 | Floodable stripe | Vector/line | modeled | surface |
17 | Buildings | Vector | primary | cost EUR/m2 |
18 | Risk area | Raster/tif | modeled | - |
Hazard | Water Depth (m) | Shear Stress (Pa/s/m2) | Explanations |
---|---|---|---|
Small | <0.5 m | >13.74 | Water depth does not induce significant damages, the drowning hazard is low and the evacuation of people can be made on foot. The water pressure on the residential infrastructures is medium, causing a risk of collapse in buildings with a poor structural frame. |
Medium | 0.5–1 m | Water depth generates damages, and there is a drowning hazard, especially for children and elderly people. Evacuation can be made by traditional means of response. The water pressure on the buildings is medium, inducing the collapse risk on the buildings with a poor structural frame. | |
Large | 1–2 m | Water depth may induce significant damages, the drowning hazard is high for children and adults. Evacuation is conducted with difficulty. The water pressure on the buildings is medium, causing a risk of collapse in buildings. | |
Very large | >2 m | Water depth exceeds the average height of a room, and the risk of drowning is imminent. Evacuation cannot be conducted by classical means of response. The evacuation time decreases proportionally with the water depth, and the water pressure on the buildings is medium, causing a risk of collapse in the buildings. |
Hazard | Consequences | Exposure | |||
---|---|---|---|---|---|
Low (<EUR 2000) | Medium (EUR 2000–6000) | High (EUR 6000–12,000) | Very High (>EUR 12,000) | ||
Very Large | Buildings | ||||
Large | |||||
Medium | |||||
Small | |||||
Low Risk | Requires information and awareness sessions | ||||
Medium Risk | Requires development of limiting land use planning projects for buildings in floodable areas | ||||
High Risk | Requires immediate measures, the development of local risk reduction strategies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilașco, Ș.; Hognogi, G.-G.; Roșca, S.; Pop, A.-M.; Iuliu, V.; Fodorean, I.; Marian-Potra, A.-C.; Sestras, P. Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins. Remote Sens. 2022, 14, 2481. https://doi.org/10.3390/rs14102481
Bilașco Ș, Hognogi G-G, Roșca S, Pop A-M, Iuliu V, Fodorean I, Marian-Potra A-C, Sestras P. Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins. Remote Sensing. 2022; 14(10):2481. https://doi.org/10.3390/rs14102481
Chicago/Turabian StyleBilașco, Ștefan, Gheorghe-Gavrilă Hognogi, Sanda Roșca, Ana-Maria Pop, Vescan Iuliu, Ioan Fodorean, Alexandra-Camelia Marian-Potra, and Paul Sestras. 2022. "Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins" Remote Sensing 14, no. 10: 2481. https://doi.org/10.3390/rs14102481
APA StyleBilașco, Ș., Hognogi, G. -G., Roșca, S., Pop, A. -M., Iuliu, V., Fodorean, I., Marian-Potra, A. -C., & Sestras, P. (2022). Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins. Remote Sensing, 14(10), 2481. https://doi.org/10.3390/rs14102481