Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Sites
2.2. Precipitation and EVI
2.3. MOD16 ET Product
2.4. ET Measurements
2.5. Statistical Analysis
3. Results
3.1. Comparison of ETMeasured and ETMODIS
3.2. Temporal Patterns in ET, Precipitation, and EVI
3.3. Long-Term Spatiotemporal Trends in ET
4. Discussion
4.1. ETMODIS Performance
4.2. Biome Responses to Precipitation as Indicated by EVI and ET
4.3. Long-Term Trend and Spatial Variability in ET in Mato Grosso
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baker, J.C.A.; Spracklen, D.V. Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Front. For. Glob. Chang. 2019, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Alkama, R.; Cescatti, A. Biophysical Climate Impacts of Recent Changes in Global Forest Cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvério, D.V.; Brando, P.M.; Macedo, M.N.; Beck, P.S.A.; Bustamante, M.; Coe, M.T. Agricultural Expansion Dominates Climate Changes in Southeastern Amazonia: The Overlooked Non-GHG Forcing. Environ. Res. Lett. 2015, 10, 104015. [Google Scholar] [CrossRef]
- Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; de Arruda, P.H.Z.; Neves, G.A.R.; de Almeida Lobo, F.; Neale, C.M.U.; de Souza Nogueira, J. Patterns of Energy Exchange for Tropical Ecosystems across a Climate Gradient in Mato Grosso, Brazil. Agric. For. Meteorol. 2015, 202, 112–124. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalamandeen, M.; Gloor, E.; Mitchard, E.; Quincey, D.; Ziv, G.; Spracklen, D.; Spracklen, B.; Adami, M.; Aragaõ, L.E.O.C.; Galbraith, D. Pervasive Rise of Small-Scale Deforestation in Amazonia. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.H.R.; AghaKouchak, A.; Randerson, J.T. Unraveling the Role of Temperature and Rainfall on Active Fires in the Brazilian Amazon Using a Nonlinear Poisson Model. J. Geophys. Res. Biogeosci. 2018, 123, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Ivo, I.O.; Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; Martim, C.C. Effect of Fires on Biophysical Parameters, Energy Balance and Evapotranspiration in a Protected Area in the Brazilian Cerrado. Remote Sens. Appl. Soc. Environ. 2020, 19, 100342. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of Land Cover Change on Evapotranspiration and Streamflow of Small Catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
- da Silva, H.J.F.; Gonçalves, W.A.; Bezerra, B.G. Comparative Analyzes and Use of Evapotranspiration Obtained through Remote Sensing to Identify Deforested Areas in the Amazon. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 163–174. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Souza Nogueira, J.; de Almeida Lobo, F.; Sendall, K.M.; de Paulo, S.R.; Antunes Dias, C.A.; Pinto, O.B.; de Andrade, N.L.R. Energy Balance and Canopy Conductance of a Tropical Semi-Deciduous Forest of the Southern Amazon Basin. Water Resour. Res. 2008, 44, 44. [Google Scholar] [CrossRef] [Green Version]
- Klink, C.A.; Klink, C.A.; Machado, R.B.; Machado, R.B. A Conservação Do Cerrado Brasileiro. Megadiversidade 2005, 1, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Fantin-Cruz, I.; Girard, P.; Zeilhofer, P.; Collischonn, W.; da Cunha, C.N. Unidades Fitofisionômicas Em Mesoescala No Pantanal Norte e Suas Relaçǒes Com a Geomorfologia. Biota Neotrop. 2010, 10, 31–38. [Google Scholar] [CrossRef]
- Noojipady, P.; Morton, C.D.; Macedo, N.M.; Victoria, C.D.; Huang, C.; Gibbs, K.H.; Bolfe, L.E. Forest Carbon Emissions from Cropland Expansion in the Brazilian Cerrado Biome. Environ. Res. Lett. 2017, 12, 025004. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Souza Nogueira, J.; de Almeida Lobo, F.; Pinto, O.B. Variations in Evapotranspiration and Climate for an Amazonian Semi-Deciduous Forest over Seasonal, Annual, and El Niño Cycles. Int. J. Biometeorol. 2014, 59, 217–230. [Google Scholar] [CrossRef]
- Machado, N.G.; Biudes, M.S.; Angelini, L.P.; Mützenberg, D.M.; Nassarden, D.C.; Bilio, R.D.; Silva, T.J.A.; Neves, G.A.R.; Arruda, P.H.Z.; Nogueira, J.D. Sazonalidade Do Balanço de Energia e Evapotranspiração Em Área Arbustiva Alagável No Pantanal Mato-Grossense. Rev. Bras. Meteorol. 2016, 31, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Gomis-Cebolla, J.; Jimenez, J.C.; Sobrino, J.A.; Corbari, C.; Mancini, M. Intercomparison of Remote-Sensing Based Evapotranspiration Algorithms over Amazonian Forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 280–294. [Google Scholar] [CrossRef]
- Amatya, D.M.; Irmak, S.; Gowda, P.; Sun, G.; Nettles, J.E.; Douglas-Mankin, K.R. Ecosystem Evapotranspiration: Challenges in Measurements, Estimates, and Modeling. Trans. ASABE 2016, 59, 555–560. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Liu, J. Evolution of Evapotranspiration Models Using Thermal and Shortwave Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111594. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Diak, G.R.; Anderson, M.C.; Norman, J.M. Estimating Fluxes on Continental Scales Using Remotely Sensed Data in an Atmospheric-Land Exchange Model. J. Appl. Meteorol. 1999, 38, 1352–1369. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A Climatological Study of Evapotranspiration and Moisture Stress across the Continental United States Based on Thermal Remote Sensing: 2. Surface Moisture Climatology. J. Geophys. Res. Atmos. 2007, 112, D11112. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Budde, M.E.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) Approach for Estimating Landscape ET: Validation with the METRIC Model. Agric. Water Manag. 2011, 98, 606–618. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A.; et al. Representativeness of Eddy-Covariance Flux Footprints for Areas Surrounding AmeriFlux Sites. Agric. For. Meteorol. 2021, 301–302, 108350. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Anderson, M.C.; Prueger, J.H.; Scott, R.L. Effect of Remote Sensing Spatial Resolution on Interpreting Tower-Based Flux Observations. Remote Sens. Environ. 2008, 112, 337–349. [Google Scholar] [CrossRef]
- Paca, V.H.; Espinoza-Dávalos, G.E.; da Silva, R.; Tapajós, R.; dos Santos Gaspar, A.B. Remote Sensing Products Validated by Flux Tower Data in Amazon Rain Forest. Remote Sens. 2022, 14, 1259. [Google Scholar] [CrossRef]
- Salazar-Martínez, D.; Holwerda, F.; Holmes, T.R.H.; Yépez, E.A.; Hain, C.R.; Alvarado-Barrientos, S.; Ángeles-Pérez, G.; Arredondo-Moreno, T.; Delgado-Balbuena, J.; Figueroa-Espinoza, B.; et al. Evaluation of Remote Sensing-Based Evapotranspiration Products at Low-Latitude Eddy Covariance Sites. J. Hydrol. 2022, 610, 127786. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Aragao, L.E.O.C.; Mu, Q.; Malhi, Y.; Collischonn, W.; Rocha, H.R.; Running, S.W. Assessment of the MODIS Global Evapotranspiration Algorithm Using Eddy Covariance Measurements and Hydrological Modelling in the Rio Grande Basin. Hydrol. Sci. J. 2013, 58, 1658–1676. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. User’s Guide. In MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-end Gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm 2019; National Aeronautics and Space Administration: Washington, DC, USA, 2019; Volume 2, p. 36. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document. Collection 5; NASA Headquarters: Washington, DC, USA, 2013; p. 66.
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, A.L.; Flores, H.; Crespo, G.; Marín, M.I.; Campos, I.; Calera, A. Performance Assessment of MOD16 in Evapotranspiration Evaluation in Northwestern Mexico. Water 2018, 10, 901. [Google Scholar] [CrossRef] [Green Version]
- Autovino, D.; Minacapilli, M.; Provenzano, G. Modelling Bulk Surface Resistance by MODIS Data and Assessment of MOD16A2 Evapotranspiration Product in an Irrigation District of Southern Italy. Agric. Water Manag. 2016, 167, 86–94. [Google Scholar] [CrossRef]
- Du, J.; Song, K. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China. Chin. Geogr. Sci. 2018, 28, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional Evapotranspiration from an Image-Based Implementation of the Surface Temperature Initiated Closure (STIC1.2) Model and Its Validation across an Aridity Gradient in the Conterminous US. Hydrol. Earth Syst. Sci. 2018, 22, 2311–2341. [Google Scholar] [CrossRef] [Green Version]
- Miranda, R.D.Q.; Galvíncio, J.D.; De Moura, M.S.B.; Jones, C.A.; Srinivasan, R. Reliability of MODIS Evapotranspiration Products for Heterogeneous Dry Forest: A Study Case of Caatinga. Adv. Meteorol. 2017, 2017, 9314801. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Wittmann, F.; Marques, M.C.M.; Júnior, G.D.; Budke, J.C.; Piedade, M.T.F.; De Wittmann, A.O.; Montero, J.C.; De Assis, R.L.; Targhetta, N.; Parolin, P.; et al. The Brazilian Freshwater Wetscape: Changes in Tree Community Diversity and Composition on Climatic and Geographic Gradients. PLoS ONE 2017, 12, 18. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Almeida Lobo, F.; Lawrence, S.; Codolo de Lucena, I.; Pinto, O.B., Jr.; Dalmagro, H.J.; Carmen, E.; Rodriguez, O.; de Souza Nogueira, J. Variations in Stand Structure and Diversity along a Soil Fertility Gradient in a Brazilian Savanna (Cerrado) in Southern Mato Grosso. Soil Sci. Soc. Am. J. 2013, 77, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.R.; Vourlitis, G.L.; Lobo, F.D.A.; De Oliveira, R.G.; Nogueira, J.D.S. Seasonal Variation in Energy Balance and Canopy Conductance for a Tropical Savanna Ecosystem of South Central Mato Grosso, Brazil. J. Geophys. Res. Biogeosci. 2014, 119, 1–13. [Google Scholar] [CrossRef]
- Rodrigues, T.R.; Vourlitis, G.L.; Lobo, F.D.; Santanna, F.B.; de Arruda, P.H.; Nogueira, J.D. Modeling Canopy Conductance under Contrasting Seasonal Conditions for a Tropical Savanna Ecosystem of South Central Mato Grosso, Brazil. Agric. For. Meteorol. 2016, 218–219, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Girard, P.; Fantin-Cruz, I.; de Oliveira, S.M.L.; Hamilton, S.K. Small-Scale Spatial Variation of Inundation Dynamics in a Floodplain of the Pantanal (Brazil). Hydrobiologia 2010, 638, 223–233. [Google Scholar] [CrossRef]
- Dubreuil, V.; Debortoli, N.; Funatsu, B.; Nédélec, V.; Durieux, L. Impact of Land-Cover Change in the Southern Amazonia Climate: A Case Study for the Region of Alta Floresta, Mato Grosso, Brazil. Environ. Monit. Assess. 2012, 184, 877–891. [Google Scholar] [CrossRef]
- Quesada, C.A.; Lloyd, J.; Schwarz, M.; Patiño, S.; Baker, T.R.; Czimczik, C.; Fyllas, N.M.; Martinelli, L.; Nardoto, G.B.; Schmerler, J. Variations in Chemical and Physical Properties of Amazon Forest Soils in Relation to Their Genesis. Biogeosciences 2010, 7, 1515–1541. [Google Scholar] [CrossRef] [Green Version]
- Biudes, M.S.; Machado, N.G.; Danelichen, V.H.; Souza, M.C.; Vourlitis, G.L.; Nogueira, J.D. Ground and Remote Sensing-Based Measurements of Leaf Area Index in a Transitional Forest and Seasonal Flooded Forest in Brazil. Int. J. Biometeorol. 2014, 58, 1181–1193. [Google Scholar] [CrossRef]
- Priante-Filho, N.; Vourlitis, G.L.; Hayashi, M.M.S.; Nogueira, J.D.S.; Campelo, J.H., Jr.; Nunes, P.C.; Souza, L.S.E.; Couto, E.G.; Hoeger, W.; Raiter, F. Comparison of the Mass and Energy Exchange of a Pasture and a Mature Transitional Tropical Forest of the Southern Amazon Basin during a Seasonal Transition. Glob. Chang. Biol. 2004, 10, 863–876. [Google Scholar] [CrossRef]
- RADAMBRASIL, P. Levantamentos Dos Recursos Naturais. In Secretaria Geral. Projeto RADAMBRASIL. Folha SD 21 Cuiabá; Secretaria Geral: Rio deJaneiro, Brazil, 1982; p. 448. [Google Scholar]
- Domingues, A.N.; de Abreu, J.G.; Caneppele, C.; dos Reis, R.H.P.; Neto, A.B.; de Almeida, C.M. Características Agronômicas de Híbridos de Milho Para Produção de Silagem No Estado Do Mato Grosso, Brasil. Acta Sci. Anim. Sci. 2013, 35, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Machado, N.G.; Biudes, M.S.; Querino, C.A.; de Morais Danelichen, V.H.; Velasque, M.C. Seasonal and Interannual Pattern of Meteorological Variables in Cuiabá, Mato Grosso State, Brazil. Rev. Bras. De Geofis. 2015, 33, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Nunes Da Cunha, C.; Junk, W.J. Year-to-Year Changes in Water Level Drive the Invasion of Vochysia Divergens in Pantanal Grasslands. Appl. Veg. Sci. 2004, 7, 103–110. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In Methods in Ecosystem Science; Sala, O., Jackson, R., Mooney, H., Eds.; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Perez, P.J.; Castellvi, F.; Ibañez, M.; Rosell, J.I. Assessment of Reliability of Bowen Ratio Method for Partitioning Fluxes. Agric. For. Meteorol. 1999, 97, 141–150. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, C.; Li, J.; Wang, F.; Chen, Y. Discussion and Reassessment of the Method Used for Accepting or Rejecting Data Observed by a Bowen Ratio System. Hydrol. Processes 2014, 28, 4506–4510. [Google Scholar] [CrossRef]
- Moore, C.J.; Fisch, G. Estimating Heat Storage in Amazonian Tropical Forest. Agric. For. Meteorol. 1986, 38, 147–168. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. 1985, 90, 8995. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Munger, J.W.; Saleska, S.R.; Gottlieb, E.; Daube, B.C.; Dunn, A.L.; Amaral, D.F.; de Camargo, P.B.; Wofsy, S.C. Seasonal Controls on the Exchange of Carbon and Water in an Amazonian Rain Forest. J. Geophys. Res. Biogeosci. 2007, 112, 112. [Google Scholar] [CrossRef]
- Machado, N.G.; Sanches, L.; Silva, L.B.; Novais, J.W.Z.; Aquino, A.M.; Biudes, M.S.; Pinto-Junior, O.B.; Nogueira, J.S. Soil Nutrients and Vegetation Structure in a Neotropical Seasonal Wetland. Appl. Ecol. Environ. Res. 2015, 13, 289–305. [Google Scholar] [CrossRef]
- Danelichen, V.H.; Biudes, M.S.; Souza, M.C.; Machado, N.G.; Nogueira, J.D. Relations of Vegetation and Water Indices to Volumetric Soil Water Content in the Pantanal of Mato Grosso, Brazil. Int. J. Remote Sens. 2016, 37, 4261–4275. [Google Scholar] [CrossRef]
- Jarvis, P. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements. Irrig. Drain. 1998, 300, 300. [Google Scholar] [CrossRef]
- Bucci, S.J.; Scholz, F.G.; Goldstein, G.; Meinzer, F.C.; Hinojosa, J.A.; Hoffmann, W.A.; Franco, A.C. Processes Preventing Nocturnal Equilibration between Leaf and Soil Water Potential in Tropical Savanna Woody Species. Tree Physiol. 2004, 24, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Shao, K.; Li, Z.; Wu, H.; Tang, B.; Zhou, G.; Zhang, L. Multiscale Validation of the 8-Day MOD16 Evapotranspiration Product Using Flux Data Collected in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1478–1486. [Google Scholar] [CrossRef]
- Souza, V.D.; Roberti, D.R.; Ruhoff, A.L.; Zimmer, T.; Adamatti, D.S.; Gonçalves, L.G.; Diaz, M.B.; Alves, R.D.; de Moraes, O.L. Evaluation of MOD16 Algorithm over Irrigated Rice Paddy Using Flux Tower Measurements in Southern Brazil. Water 2019, 11, 1911. [Google Scholar] [CrossRef] [Green Version]
- Paca, V.H.; Espinoza-Dávalos, G.E.; Hessels, T.M.; Moreira, D.M.; Comair, G.F.; Bastiaanssen, W.G. The Spatial Variability of Actual Evapotranspiration across the Amazon River Basin Based on Remote Sensing Products Validated with Flux Towers. Ecol. Processes 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q.; et al. The WACMOS-ET Project – Part 1: Tower-Scale Evaluation of Four Remote-Sensing-Based Evapotranspiration Algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Lakshmi, V.; Wang, D.; Lin, P.; Pan, M.; Cai, X.; Wood, E.F.; Zeng, Z. The Reliability of Global Remote Sensing Evapotranspiration Products over Amazon. Remote Sens. 2020, 12, 2211. [Google Scholar] [CrossRef]
- Matin, M.A.; Bourque, C.P.-A. Assessing Spatiotemporal Variation in Actual Evapotranspiration for Semi-Arid Watersheds in Northwest China: Evaluation of Two Complementary-Based Methods. J. Hydrol. 2013, 486, 455–465. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 Global Terrestrial Evapotranspiration Products in Various Climates and Land Cover Types in Asia. KSCE J. Civ. Eng. 2012, 16, 229–238. [Google Scholar] [CrossRef]
- dos Santos, C.A.; Mariano, D.A.; Francisco das Chagas, A.; Dantas, F.R.; de Oliveira, G.; Silva, M.T.; da Silva, L.L.; da Silva, B.B.; Bezerra, B.G.; Safa, B.; et al. Spatio-Temporal Patterns of Energy Exchange and Evapotranspiration during an Intense Drought for Drylands in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101982. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Almeida Lobo, F.; Biudes, M.S.; Rodríguez Ortíz, C.E.; de Souza Nogueira, J. Spatial Variations in Soil Chemistry and Organic Matter Content across a Vochysia Divergens Invasion Front in the Brazilian Pantanal. Soil Sci. Soc. Am. J. 2011, 75, 1554–1561. [Google Scholar] [CrossRef]
- Zeilhofer, P. Soil Mapping in the Pantanal of Mato Grosso, Brazil, Using Multitemporal Landsat TM Data. Wetl. Ecol. Manag. 2006, 14, 445–461. [Google Scholar] [CrossRef]
- Fisher, R.A.; Williams, M.; da Costa, A.L.; Malhi, Y.; da Costa, R.F.; Almeida, S.; Meir, P. The Response of an Eastern Amazonian Rain Forest to Drought Stress: Results and Modelling Analyses from a Throughfall Exclusion Experiment. Glob. Chang. Biol. 2007, 13, 2361–2378. [Google Scholar] [CrossRef]
- Salis, S.M.; Lehn, C.R.; Mattos, P.P.; Bergier, I.; Crispim, S.M.A. Root Behavior of Savanna Species in Brazil’s Pantanal Wetland. Glob. Ecol. Conserv. 2014, 2, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha, H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; R-Coupe, N.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of Water and Heat Flux across a Biome Gradient from Tropical Forest to Savanna in Brazil. J. Geophys. Res. Biogeosci. 2009, 114, G00B12. [Google Scholar] [CrossRef]
- Maksic, J.; Venancio, I.M.; Shimizu, M.H.; Chiessi, C.M.; Piacsek, P.; Sampaio, G.; Cruz, F.W.; Alexandre, F.F. Brazilian Biomes Distribution: Past and Future. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 585, 110717. [Google Scholar] [CrossRef]
- Danelichen, V.H.D.M.; Machado, N.G.; Biudes, M.S.; Souza, M.C. TRMM satellite performance in estimated rainfall over the midwest region of Brazil. Rev. Bras. De Climatol. 2013, 12, 2237–8642. [Google Scholar] [CrossRef] [Green Version]
- Machado, N.G.; Ventura, T.M.; de Morais Danelichen, V.H.; Querino, C.A.S.; Biudes, M.S. Estimation of Rainfall of Neural Network over a Neotropical Region. Rev. Bras. De Climatol. 2015, 17, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.H.; Biajoli, M.C.; Sanches, L.; Malhado, A.C.M.; Hutyra, L.R.; da Rocha, H.R.; Aguiar, R.G.; de Araújo, A.C. Atmospheric versus Vegetation Controls of Amazonian Tropical Rain Forest Evapotranspiration: Are the Wet and Seasonally Dry Rain Forests Any Different? J. Geophys. Res. Biogeosci. 2010, 115, G04021. [Google Scholar] [CrossRef]
- Hasler, N.; Avissar, R. What Controls Evapotranspiration in the Amazon Basin? J. Hydrometeorol. 2007, 8, 380–395. [Google Scholar] [CrossRef]
- Freitas, S.R.; Panetta, J.; Longo, K.M.; Rodrigues, L.F.; Moreira, D.S.; Rosário, N.E.; Silva Dias, P.L.; Silva Dias, M.A.F.; Souza, E.P.; Freitas, E.D.; et al. The Brazilian Developments on the Regional Atmospheric Modeling System (BRAMS 5.2): An Integrated Environmental Model Tuned for Tropical Areas. Geosci. Model Dev. 2017, 10, 189–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, C.T.; Oliveira-Júnior, J.F.; Delgado, R.C.; Cubo, P.; Ramos, M.C. Spatiotemporal Rainfall and Temperature Trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 2017, 37, 2013–2026. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef] [Green Version]
- Virji, H. A Preliminary Study of Summertime Tropospheric Circulation Patterns over South America Estimated from Cloud Winds. Mon. Weather Rev. 1981, 109, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Fisch, G.F.; Alves, L.M.; Sousa, N.V.; Fu, R.; Zhuang, Y. Meteorological Context of the Onset and End of the Rainy Season in Central Amazonia during the GoAmazon2014/5. Atmos. Chem. Phys. 2017, 17, 7671–7681. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, K.; Leung, L.R.; Burleyson, C.D.; Xiao, H.; Wan, H. Role of Troposphere-Convection-Land Coupling in the Southwestern Amazon Precipitation Bias of the Community Earth System Model Version 1 (CESM1). J. Geophys. Res. Atmos. 2018, 123, 8374–8399. [Google Scholar] [CrossRef]
- Heerspink, B.P.; Kendall, A.D.; Coe, M.T.; Hyndman, D.W. Trends in Streamflow, Evapotranspiration, and Groundwater Storage across the Amazon Basin Linked to Changing Precipitation and Land Cover. J. Hydrol. Reg. Stud. 2020, 32, 100755. [Google Scholar] [CrossRef]
Biome | Site | Description | Data Availability | |
---|---|---|---|---|
1 | Amazon | AFL | dense, evergreen ombrophilous forest near the city of Alta Floresta | 2002–2003 |
2 | SIN | Amazon–Cerrado transition forest near Sinop City | 2001–2008 | |
3 | FSN | non-native Brachiaria brizantha pasture in the Fazenda São Nicolau near Cotriguaçu | 2002–2003 | |
4 | Cerrado | FAI | Cerrado Stricto Sensu located at Fazenda Arco-Iris near Barra do Bugres | 2019–2020 |
5 | FMI | mixed woodland–grassland at Fazenda Miranda near Cuiabá city | 2009–2013 | |
6 | FEX | non-native grassland located at the Fazenda Experimental near Cuiabá | 2006–2009 | |
7 | Pantanal | BPE | seasonal flooded large shrubs at Baía das Pedras near Cuiabá city | 2010–2015 |
9 | CAM | Monodominant seasonal flooded forest from Cambará at RPPN SESC Pantanal near Cuiabá city | 2006–2009 |
Site | r | d | MAE (mm 8-day−1) | RMSE (mm 8-day−1) | |
---|---|---|---|---|---|
Amazon | AFL | 0.55 *** | 0.49 | 5.1 | 5.5 |
SIN | 0.62 *** | 0.45 | 9.4 | 10.5 | |
FSN | 0.79 *** | 0.32 | 13.7 | 14.6 | |
Cerrado | FAI | 0.89 *** | 0.74 | 10.9 | 11.7 |
FMI | 0.68 *** | 0.78 | 5.4 | 7.5 | |
FEX | 0.72 *** | 0.73 | 5.2 | 6.6 | |
Pantanal | CAM | 0.60 *** | 0.65 | 7.4 | 9.6 |
BPE | 0.71 *** | 0.73 | 6.9 | 7.9 | |
Amazon (AMZ) | 0.54 *** | 0.44 | 9.5 | 10.7 | |
Cerrado (CER) | 0.71 *** | 0.77 | 6.3 | 8.2 | |
Panatanal (PAN) | 0.61 *** | 0.73 | 7.1 | 8.7 | |
ALL | 0.51 *** | 0.68 | 7.7 | 9.4 |
Site | Precipitation (Ppt) (mm) | EVI | |||||
---|---|---|---|---|---|---|---|
Annual | Dry (May–Sept.) | Wet (Oct.–April) | Annual | Dry (May–Sept.) | Wet (Oct.–April) | ||
AFL | 2198 | 191 | 2007 | 0.54 ± 0.03 | 0.54 ± 0.02 | 0.54 ± 0.05 | |
Amazon | SIN | 1896 | 102 | 1794 | 0.50 ± 0.02 | 0.51 0.01 | 0.49 ± 0.02 |
FSN | 2138 | 184 | 1953 | 0.44 ± 0.04 | 0.42 ± 0.05 | 0.45 ± 0.05 | |
FAI | 1625 | 154 | 1471 | 0.37 ± 0.04 | 0.29 ± 0.04 | 0.42 ± 0.03 | |
Cerrado | FMI | 1643 | 145 | 1498 | 0.33 ± 0.03 | 0.27 ± 0.02 | 0.37 ± 0.02 |
FEX | 1628 | 144 | 1484 | 0.37 ± 0.03 | 0.30 ± 0.03 | 0.42 ± 0.01 | |
Pantanal | CAM | 1530 | 256 | 1274 | 0.50 ± 0.03 | 0.46 ± 0.02 | 0.54 ± 0.04 |
BPE | 1521 | 251 | 1270 | 0.45 ± 0.04 | 0.39 ± 0.04 | 0.52 ± 0.04 | |
Amazon (AMZ) | 2077 | 159 | 1918 | 0.49 ± 0.02 | 0.49 ± 0.03 | 0.49 ± 0.03 | |
Cerrado (CER) | 1632 | 148 | 1485 | 0.36 ± 0.02 | 0.29 ± 0.02 | 0.40 ± 0.02 | |
Pantanal (PAN) | 1525 | 254 | 1272 | 0.48 ± 0.03 | 0.43 ± 0.03 | 0.53 ± 0.03 | |
All sites (ALL) | 1745 | 187 | 1558 | 0.44 ± 0.02 | 0.40 ± 0.03 | 0.47 ± 0.02 |
Region | Amazon | Cerrado | Pantanal | |||||
---|---|---|---|---|---|---|---|---|
Sites | AFL | SIN | FSN | FAI | FMI | FEX | CAM | BPE |
Variables | ||||||||
ETMeasured × Ppt | −0.47 | −0.21 | 0.37 | 0.70 ** | 0.62 *** | 0.64 *** | 0.63 *** | 0.72 *** |
ETMeasured × EVI | −0.03 | 0.20 | 0.43 | 0.93 *** | 0.80 *** | 0.58 *** | 0.55 *** | 0.82 *** |
ETMODIS × Ppt | −0.47 | 0.02 | 0.31 | 0.80 *** | 0.60 *** | 0.79 *** | 0.56 *** | 0.77 *** |
ETMODIS × EVI | −0.29 | 0.03 | 0.57 * | 0.89 *** | 0.73 *** | 0.88 *** | 0.38 * | 0.80 *** |
Ppt × EVI | −0.29 | −0.27 ** | 0.05 | 0.76 *** | 0.72 *** | 0.67 *** | 0.52 *** | 0.74 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biudes, M.S.; Geli, H.M.E.; Vourlitis, G.L.; Machado, N.G.; Pavão, V.M.; dos Santos, L.O.F.; Querino, C.A.S. Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sens. 2022, 14, 2482. https://doi.org/10.3390/rs14102482
Biudes MS, Geli HME, Vourlitis GL, Machado NG, Pavão VM, dos Santos LOF, Querino CAS. Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sensing. 2022; 14(10):2482. https://doi.org/10.3390/rs14102482
Chicago/Turabian StyleBiudes, Marcelo Sacardi, Hatim M. E. Geli, George Louis Vourlitis, Nadja Gomes Machado, Vagner Marques Pavão, Luiz Octávio Fabrício dos Santos, and Carlos Alexandre Santos Querino. 2022. "Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil" Remote Sensing 14, no. 10: 2482. https://doi.org/10.3390/rs14102482
APA StyleBiudes, M. S., Geli, H. M. E., Vourlitis, G. L., Machado, N. G., Pavão, V. M., dos Santos, L. O. F., & Querino, C. A. S. (2022). Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sensing, 14(10), 2482. https://doi.org/10.3390/rs14102482