Influence of Open-Pit Coal Mining on Ground Surface Deformation of Permafrost in the Muli Region in the Qinghai-Tibet Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Sentinel-1 Data
2.2.2. Landsat and Gaofen Data
2.2.3. Other Data
2.3. Methods
2.3.1. Human-Computer Interactive Visual Interpretation
2.3.2. SBAS-InSAR
3. Results
3.1. LULC Structure and Mining Development Process in the Muli Region
3.2. Surface Displacement Velocity and Time Series Displacement in the Muli Region
3.2.1. Surface Displacement Velocity and Time Series Displacement of Natural Type
3.2.2. Surface Displacement Velocity and Time Series Displacement of Mining Area
3.3. Mean Cumulative Displacement in Permafrost Region Outside the Mining Area
4. Discussion
4.1. Precision Analysis of Surface Deformation Monitoring
4.2. Characteristics of Surface Deformation in Open-Pit Mining Area and Its Influence on Surrounding Permafrost
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q.; Cheng, G.D.; Li, S.D. Geocryology in China; Science Press: Beijing, China, 2000; p. 486. (In Chinese) [Google Scholar]
- Cheng, G.D.; Zhao, L.; Li, R.; Wu, X.D.; Sheng, Y.; Hu, G.J.; Zou, D.F.; Jin, H.J.; Li, X.; Wu, Q.B. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. (In Chinese) [Google Scholar]
- Ding, Y.J.; Zhang, S.Q.; Zhao, L.; Li, Z.Q.; Kang, S.C. Global warming weakening the inherent stability of glaciers and permafrost. Sci. Bull. 2019, 64, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.L.; Wang, H.J.; Li, D. A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J. Geophys. Res.-Atmos. 2012, 117, D05106. [Google Scholar] [CrossRef]
- Luo, D.L.; Jin, H.J.; Jin, X.Y.; He, R.X.; Li, X.Y.; Muskett, R.R.; Marchenko, S.S.; Romanovsky, V.E. Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest China. Permafr. Periglac. Process. 2018, 29, 257–270. [Google Scholar] [CrossRef]
- Qi, Y.; Li, S.W.; Ran, Y.H.; Wang, H.W.; Wu, J.C.; Lian, X.H.; Luo, D.L. Mapping frozen ground in the Qilian Mountains in 2004–2019 using google earth engine cloud computing. Remote Sens. 2021, 13, 149. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Cheng, G.D. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.B.; Hou, Y.D.; Yun, H.B.; Liu, Y.Z. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China. Glob. Planet. Change 2015, 124, 149–155. [Google Scholar] [CrossRef]
- You, Q.G.; Xue, X.; Peng, F.; Dong, S.Y.; Gao, Y.H. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric. For. Meteorol. 2017, 232, 48–65. [Google Scholar] [CrossRef]
- Peng, H.; Ma, W.; Mu, Y.H.; Jin, L.; Yuan, K. Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai–Tibet Highway. Nat. Hazards 2015, 75, 2589–2605. [Google Scholar] [CrossRef]
- Wu, Q.B.; Dong, X.F.; Liu, Y.Z.; Jin, H.J. Responses of permafrost on the Qinghai-Tibet Plateau, China, to climate change and engineering construction. Arct. Antarct. Alp. Res. 2007, 39, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Sheng, Y.; Wu, J.C.; Li, J.; Chou, Y.L.; Li, J.P. Simulation analysis of the impacts of underground mining on permafrost in an opencast coal mine in the northern Qinghai-Tibet Plateau. Environ. Earth Sci. 2017, 76, 711. [Google Scholar] [CrossRef]
- Yang, M.X.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.L.; Wan, G.N. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Wang, T.H.; Yang, D.W.; Yang, Y.T.; Piao, S.L.; Li, X.; Cheng, G.D.; Fu, B.J. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 2020, 6, eaaz3513. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wu, T.H.; Zhu, X.F.; Wu, X.D.; Qiang, P.Q.; Fu, Z.D.; Chen, J.; Li, R.; Hu, G.J.; Du, Y.Z.; et al. Risk assessment of potential thaw settlement hazard in the permafrost regions of Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 776, 145855. [Google Scholar] [CrossRef]
- Hjort, J.; Streletskiy, D.; Doré, G.; Wu, Q.B.; Bjella, K.; Luoto, M. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 2022, 3, 24–38. [Google Scholar] [CrossRef]
- Antonova, S.; Sudhaus, H.; Strozzi, T.; Zwieback, S.; Kääb, A.; Heim, B.; Langer, M.; Bornemann, N.; Boike, J. Thaw subsidence of a Yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X interferometry. Remote Sens. 2018, 10, 494. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Ma, W.; Liu, D.; Wu, Q.B. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway. Rock Soil Mech. 2008, 29, 571–579. (In Chinese) [Google Scholar]
- Wang, C.; Zhang, Z.J.; Zhang, H.; Wu, Q.B.; Zhang, B.; Tang, Y.X. Seasonal deformation features on Qinghai-Tibet railway observed using time-series InSAR technique with high-resolution TerraSAR-X images. Remote Sens. Lett. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Liu, L.; Larson, K.M. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals. Cryosphere 2018, 12, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.H.; Ma, W.; Zhang, Z.Q.; Zhuang, Y.L.; Zhang, Y.N.; Yang, J.Q.; Cao, X.C.; Liang, S.T.; Mu, Y.H. Freeze/thaw-induced deformation monitoring and assessment of the slope in permafrost based on terrestrial laser scanner and GNSS. Remote Sens. 2017, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Little, J.D.; Sandall, H.; Walegur, M.T.; Nelson, F.E. Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments. Permafr. Periglac. Process. 2003, 14, 349–357. [Google Scholar] [CrossRef]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wu, Y.; O’Connor, M.; Cardenas, M.B.; Schaefer, K.; Michaelides, R.; Kling, G. Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR. Remote Sens. Environ. 2020, 248, 112007. [Google Scholar] [CrossRef]
- Strozzi, T.; Antonova, S.; Günther, F.; Mätzler, E.; Vieira, G.; Wegmüller, U.; Westermann, S.; Bartsch, A. Sentinel-1 SAR interferometry for surface deformation monitoring in low-land permafrost areas. Remote Sens. 2018, 10, 1360. [Google Scholar] [CrossRef] [Green Version]
- Short, N.; LeBlanc, A.M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Rudy, A.C.A.; Lamoureux, S.F.; Treitz, P.; Short, N.; Brisco, B. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Marzahn, P.; Bernier, M.; Ludwig, R. Sentinel-1 InSAR measurements of deformation over discontinuous permafrost terrain, Northern Quebec, Canada. Remote Sens. Environ. 2020, 248, 111965. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Abe, T.; Iwahana, G.; Efremov, P.V.; Desyatkin, A.R.; Kawamura, T.; Fedorov, A.; Zhegusov, Y.; Yanagiya, K.; Tadono, T. Surface displacement revealed by L-band InSAR analysis in the Mayya area, Central Yakutia, underlain by continuous permafrost. Earth Planets Space 2020, 72, 138. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Zhang, T.J.; Cao, B.; Lin, H. Using persistent scatterer interferometry to map and quantify permafrost thaw subsidence: A case study of eboling mountain on the Qinghai-Tibet Plateau. J. Geophy. Res.-Earth Surf. 2018, 123, 2663–2676. [Google Scholar] [CrossRef]
- Lu, P.; Han, J.P.; Li, Z.S.; Xu, R.G.; Li, R.X.; Hao, T.; Qiao, G. Lake outburst accelerated permafrost degradation on Qinghai-Tibet Plateau. Remote Sens. Environ. 2020, 249, 112011. [Google Scholar] [CrossRef]
- Daout, S.; Doin, M.P.; Peltzer, G.; Socquet, A.; Lasserre, C. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 901–909. [Google Scholar] [CrossRef]
- Chen, Y.X.; Jiang, L.M.; Liang, L.L.; Zhou, Z.W. Monitoring permafrost deformation deformation in the upatream Heihe River, Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset. Chin. J. Geophys. 2019, 62, 2441–2454. (In Chinese) [Google Scholar]
- Yang, H.L.; Jiang, Q.; Han, J.F.; Kang, K.Y.; Peng, J.H. InSAR measurements of surface deformation over permafrost on Fenghuoshan Mountains section, Qinghai-Tibet Plateau. J. Syst. Eng. Electron. 2021, 32, 1284–1303. [Google Scholar]
- Zhang, X.F.; Zhang, H.; Wang, C.; Tang, Y.X.; Zhang, B.; Wu, F.; Wang, J.; Zhang, Z.J. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai–Tibetan Plateau using Sentinel-1 data. Remote Sens. 2019, 11, 1000. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Sheng, Y.; Qin, Y.H.; Li, J.; Wu, J.C. An application of a new method in permafrost environment assessment of Muli mining area in Qinghai-Tibet Plateau, China. Environ. Earth Sci. 2011, 63, 609–616. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Wu, J.C.; Li, J.; Li, J.P.; Chou, Y.L. Simulation analysis of the impact of excavation backfill on permafrost recovery in an opencast coal-mining pit. Environ. Earth Sci. 2016, 75, 837. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Qin, Y.H.; Li, J.; Wu, J.C. Grey relation projection model for evaluating permafrost environment in the Muli coal mining area, China. Int. J. Min. Reclam. Environ. 2010, 24, 363–374. [Google Scholar] [CrossRef]
- Qian, D.W.; Yan, C.Z.; Xing, Z.P.; Xiu, L.N. Monitoring coal mine changes and their impact on landscape patterns in an alpine region: A case study of the Muli coal mine in the Qinghai-Tibet Plateau. Environ. Monit. Assess. 2017, 189, 559. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.F.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.J.; Wu, T.H.; Wu, J.C.; Xie, C.W.; Wu, X.D.; Pang, Q.Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.W.; Cao, Y.M.; Wei, J.C.; Duan, M.; Wu, L.X.; Hou, J.X.; Zhu, J.J. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth-Sci. Rev. 2019, 192, 258–284. [Google Scholar] [CrossRef]
- Chen, F.L.; Lin, H.; Zhou, W.; Hong, T.H.; Wang, G. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens. Environ. 2013, 138, 10–18. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Zhang, H.; Tang, Y.X.; Duan, W.; Dong, L.K. Freeze-thaw deformation cycles and temporal-spatial distribution of permafrost along the Qinghai-Tibet Railway using multitrack InSAR processing. Remote Sens. 2021, 13, 4744. [Google Scholar] [CrossRef]
- Liu, S.B.; Zhao, L.; Wang, L.X.; Zou, D.F.; Zhou, H.Y.; Xie, C.W.; Qiao, Y.P.; Yue, G.Y.; Shi, J.Z. Application of InSAR technology to monitor deformation in permafrost areas. J. Glaciol. Geocryol. 2021, 43, 964–975. (In Chinese) [Google Scholar]
- Li, R.X.; Li, Z.S.; Han, J.P.; Lu, P.; Qiao, G.; Meng, X.L.; Hao, T.; Zhou, F.J. Monitoring surface deformation of permafrost in Wudaoliang Region, Qinghai–Tibet Plateau with ENVISAT ASAR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102527. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yue, G.Y.; Wu, X.D. Ground surface deformation characteristics of different alpine-grassland types in the permafrost zones of Qinghai-Tibet Plateau. Acta Ecol. Sin. 2021, 41, 2398–2407. (In Chinese) [Google Scholar]
- Wu, Q.B.; Cheng, G.D.; Ma, W. Impact of permafrost change on the Qinghai-Tibet Railroad engineering. Sci. China Ser. D-Earth Sci. 2004, 47, 122–130. [Google Scholar] [CrossRef]
- Du, Q.S.; Li, G.Y.; Zhou, Y.; Chai, M.T.; Chen, D.; Qi, S.S.; Wu, G.; Zhao, X.D. Deformation monitoring in an alpine mining area in the Tianshan Mountains based on SBAS-InSAR technology. Adv. Mater. Sci. Eng. 2021, 2021, 9988017. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Wu, J.C.; Li, J.; Chou, Y.L.; Wang, S.T. Impact of underground mining on permafrost environment. Coal Geol. Explor. 2016, 44, 98–104. (In Chinese) [Google Scholar]
- Gao, S.H.; He, R.X.; Jin, H.J.; Huang, Y.D.; Zhang, J.M.; Luo, D.L. Thermal recovery process of a backfilled open-pit in permafrost area at the Gulian strip coal mine in Northeast China. J. Mt. Sci. 2017, 14, 2212–2229. [Google Scholar] [CrossRef]
- Li, C.C.; Wang, T.; Wang, H.; Hu, Z.F.; Jiang, X.G.; Wang, W.C.; Du, B. Monitoring technology and method of ecological environment rehabilitation and treatment in Jvhugeng mining area. J. China Coal Soc. 2021, 46, 1451–1462. (In Chinese) [Google Scholar]
- Liu, S.W.; Zhang, J.M.; Zhang, H.; Zheng, B. Research on long-term creep test of permafrost on Qinghai-Tibet Plateau. Chin. J. Rock Mech. Eng. 2012, 31, 3245–3253. (In Chinese) [Google Scholar]
- Meng, Q.; Hu, C.B.; Shi, Y.L. The study of post-glacial rebound and stress evolution since the Last Ice Age in the northern North Sea of Norway by using viscoelastic finite element model. Chin. J. Geophys. 2020, 63, 3751–3763. (In Chinese) [Google Scholar]
- Li, X.; Gou, X.H.; Wang, N.L.; Sheng, Y.; Jin, H.J.; Qi, Y.; Song, X.Y.; Hou, F.J.; Li, Y.; Zhao, C.M.; et al. Tightening ecological management facilitates green development in the Qilian Mountains. Chin. Sci. Bull. 2019, 64, 2928–2937. (In Chinese) [Google Scholar]
- Cao, W.; Sheng, Y. Permafrost environment problems and countermeasures in the process of coal mining. Hydrogeol. Eng. Geol. 2013, 40, 91–96. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Qi, Y.; Zhang, J.; Zhang, J.; Yang, R.; Guo, J.; Luo, D.; Wu, J.; Zhou, S. Influence of Open-Pit Coal Mining on Ground Surface Deformation of Permafrost in the Muli Region in the Qinghai-Tibet Plateau, China. Remote Sens. 2022, 14, 2352. https://doi.org/10.3390/rs14102352
Wang H, Qi Y, Zhang J, Zhang J, Yang R, Guo J, Luo D, Wu J, Zhou S. Influence of Open-Pit Coal Mining on Ground Surface Deformation of Permafrost in the Muli Region in the Qinghai-Tibet Plateau, China. Remote Sensing. 2022; 14(10):2352. https://doi.org/10.3390/rs14102352
Chicago/Turabian StyleWang, Hongwei, Yuan Qi, Juan Zhang, Jinlong Zhang, Rui Yang, Junyu Guo, Dongliang Luo, Jichun Wu, and Shengming Zhou. 2022. "Influence of Open-Pit Coal Mining on Ground Surface Deformation of Permafrost in the Muli Region in the Qinghai-Tibet Plateau, China" Remote Sensing 14, no. 10: 2352. https://doi.org/10.3390/rs14102352
APA StyleWang, H., Qi, Y., Zhang, J., Zhang, J., Yang, R., Guo, J., Luo, D., Wu, J., & Zhou, S. (2022). Influence of Open-Pit Coal Mining on Ground Surface Deformation of Permafrost in the Muli Region in the Qinghai-Tibet Plateau, China. Remote Sensing, 14(10), 2352. https://doi.org/10.3390/rs14102352