Editorial for Special Issue: “New Insights into Ecosystem Monitoring Using Geospatial Techniques”
1. Introduction
2. Overview of Contributions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, W.; Beaumont, L.; Bowness, A.; Chambers, L.; Graham, E.; Holewa, H.; Laffan, S.; Mackey, B.; Nix, H.; Price, J.; et al. The biodiversity and climate change virtual laboratory: Where ecology meets big data. Environ. Modell. Softw. 2016, 76, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Bernhardt, E.S.; Chornesky, E.A.; Collins, S.L.; Dobson, A.P.; Duke, C.S.; Gold, B.D.; Jacobson, R.B.; Kingsland, S.E.; Kranz, R.H.; et al. Ecological science and sustainability for the 21st century. Front. Ecol. Environ. 2015, 3, 4–11. [Google Scholar] [CrossRef]
- Hampton, S.E.; Strasser, C.A.; Tewksbury, J.J.; Gram, W.K.; Budden, A.E.; Batcheller, A.L.; Duke, C.S.; Porter, J.H. Big data and the future of ecology. Front. Ecol. Environ. 2013, 11, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Wang, L.; Liang, D. Big Earth Data from space: A new engine for Earth science. Sci. Bull. 2016, 61, 505–513. [Google Scholar] [CrossRef]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Vihervaara, P.; Auvinen, A.P.; Mononen, L.; Törmä, M.; Ahlroth, P.; Anttila, S.; Böttcher, K.; Forsius, M.; Heino, J.; Heliölä, J.; et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 2017, 10, 43–59. [Google Scholar] [CrossRef]
- Tuomisto, H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 2010, 164, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Van der Maarel, E.; Franklin, J. (Eds.) Vegetation Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hernández-Romero, G.; Álvarez-Martínez, J.M.; Pérez-Silos, I.; Silió-Calzada, A.; Vieites, D.R.; Barquín, J. From Forest Dynamics to Wetland Siltation in Mountainous Landscapes: A RS-Based Framework for Enhancing Erosion Control. Remote Sens. 2022, 14, 1864. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Assessing the Impacts of Species Composition on the Accuracy of Mapping Chlorophyll Content in Heterogeneous Ecosystems. Remote Sens. 2021, 13, 4671. [Google Scholar] [CrossRef]
- Xie, G.; Niculescu, S. Mapping and Monitoring of Land Cover/Land Use (LCLU) Changes in the Crozon Peninsula (Brittany, France) from 2007 to 2018 by Machine Learning Algorithms (Support Vector Machine, Random Forest, and Convolutional Neural Network) and by Post-classification Comparison (PCC). Remote Sens. 2021, 13, 3899. [Google Scholar] [CrossRef]
- Bernier, J.C.; Miselis, J.L.; Plant, N.G. Satellite-Derived Barrier Response and Recovery Following Natural and Anthropogenic Perturbations, Northern Chandeleur Islands, Louisiana. Remote Sens. 2021, 13, 3779. [Google Scholar] [CrossRef]
- Mikula, K.; Šibíková, M.; Ambroz, M.; Kollár, M.; Ožvat, A.A.; Urbán, J.; Jarolímek, I.; Šibík, J. NaturaSat—A Software Tool for Identification, Monitoring and Evaluation of Habitats by Remote Sensing Techniques. Remote Sens. 2021, 13, 3381. [Google Scholar] [CrossRef]
- Smith, K.E.L.; Terrano, J.F.; Pitchford, J.L.; Archer, M.J. Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys. Remote Sens. 2021, 13, 3030. [Google Scholar] [CrossRef]
- Chernenkova, T.; Kotlov, I.; Belyaeva, N.; Suslova, E. Spatiotemporal Modeling of Coniferous Forests Dynamics along the Southern Edge of Their Range in the Central Russian Plain. Remote Sens. 2021, 13, 1886. [Google Scholar] [CrossRef]
- Agrillo, E.; Filipponi, F.; Pezzarossa, A.; Casella, L.; Smiraglia, D.; Orasi, A.; Attorre, F.; Taramelli, A. Earth Observation and Biodiversity Big Data for Forest Habitat Types Classification and Mapping. Remote Sens. 2021, 13, 1231. [Google Scholar] [CrossRef]
- Alessi, N.; Wellstein, C.; Rocchini, D.; Midolo, G.; Oeggl, K.; Zerbe, S. Surface Tradeoffs and Elevational Shifts at the Largest Italian Glacier: A Thirty-Years Time Series of Remotely-Sensed Images. Remote Sens. 2021, 13, 134. [Google Scholar] [CrossRef]
Reference | Study Area | Remote Sensing Data/Equipment | Target Ecosystem | Implementation on Ecosystem Monitoring |
---|---|---|---|---|
From Forest Dynamics to Wetland Siltation in Mountainous Landscapes: A RS-Based Framework for Enhancing Erosion Control. Hernández-Romero, G., et al.-https://doi.org/10.3390/rs14081864 (accessed on 1 May 2022) | Spain | Landsat TM, ETM+, OLI and Sentinel 2A/2B MSI | Natural forests in hillslopes and riparian areas | Proposed a method-ology to optimize investment for erosion prevention and wetland conservation by using only very specific areas of the landscape for habitat management (e.g., for Nature-Base Solution implementation). |
Assessing the Impacts of Species Composition on the Accuracy of Mapping Chlorophyll Content in Heterogeneous Ecosystems. Lu, B., et al.-https://doi.org/10.3390/rs13224671 (accessed on 1 May 2022) | Canada | Micro-HyperSpec by Headwall Photonics Inc. (Boston, MA, USA) | Grassland | Species-specific models for estimating chlorophyll content were developed and used to generate a chlorophyll content map of a heterogeneous grassland. Impacts of species composition on the retrieval of chlorophyll content were investigated to support future chlorophyll mapping in heterogeneous ecosystems and contribute to eco-system management. |
Mapping and Monitoring of Land Cover/Land Use (LCLU) Changes in the Crozon Peninsula (Brittany, France) from 2007 to 2018 by Machine Learning Algorithms (Support Vector Machine, Random Forest, and Convolutional Neural Network) and by Post-classification Comparison (PCC) Xie, G., et al.-https://doi.org/10.3390/rs13193899 (accessed on 1 May 2022) | France | SPOT-5 and Sentinel 2A/2B MSI | Coastal: cliffs, dunes, moors, peat bogs, and wetlands | Recommendations for further studies on LCLU changes: applying more vegetation indices or using hyperspectral images to differentiate between vegetation and planted croplands; exploring the potential of synthetic-aperture radar images as a supplement to the traditional optical images on cloudy seasons. |
Satellite-Derived Barrier Response and Recovery Following Natural and Anthropogenic Perturbations, Northern Chandeleur Islands, Louisiana Bernier, J. C., et al.-https://doi.org/10.3390/rs13183779 (accessed on 1 May 2022) | United State | Landsat TM, ETM+ and OLI | Coastal Island and estuarine habitat | Results presented reveal along-shore-variable patterns of landscape response to both natural (storm) and anthropogenic (berm emplacement) perturbations at annual to decadal scales and provide new data that demonstrate the importance of vegetative controls on barrier shoreline change, transgression, and coastal landscape evolution. |
NaturaSat—A Software Tool for Identification, Monitoring and Evaluation of Habitats by Remote Sensing Techniques Mikula, K., et al.-https://doi.org/10.3390/rs13173381 (accessed on 1 May 2022) | Slovakia | Sentinel 2A/2B MSI | Habitat types sensu Habitats Directive EC 92/43 | A software (NaturaSat) useful for habitat detec-tion, at high spatial res-olution that could be used in nature conser-vation practices, such as identifying ecosystem services, conservation value, and land-scape ecology studies. |
Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys Smith, K. E. L., et al.-https://doi.org/10.3390/rs13153030 (accessed on 1 May 2022) | United State | WorldView-2 and WorldView-3 | Coastal wetland | High-resolution satellite imagery can increase the spatial scale-range of shoreline change monitoring, provide rapid response to estimate impacts of coastal erosion, and reduce cost of labor-intensive practices. |
Spatiotemporal Modeling of Coniferous Forests Dynamics along the Southern Edge of Their Range in the Central Russian Plain Chernenkova, T., et al.-https://doi.org/10.3390/rs13101886 (accessed on 1 May 2022) | Russia | Landsat TM | Forest | Importance of permanent update of remote and field data for assessment of forest management regime |
Earth Observation and Biodiversity Big Data for Forest Habitat Types Classification and Mapping Agrillo., E., et al.-https://doi.org/10.3390/rs13071231 (accessed on 1 May 2022) | Italy | Sentinel 2A/2B MSI | Forest | Novel approach for a spatially explicit habitat mapping in Italy, using a supervised machine learning model (SMLM), through the combination of vegetation plot database (as response variable), and both spectral and environmental predictors. |
Surface Tradeoffs and Elevational Shifts at the Largest Italian Glacier: A Thirty-Years Time Series of Remotely-Sensed Images Alessi, N., et al.-https://doi.org/10.3390/rs13010134 (accessed on 1 May 2022) | Italy | Landsat TM and ETM+ | Alpine ecosystems: forest, grassland, periglacial | Workflow allows to compare the geographical extension of different terrestrial ecosystems across time using a fuzzy approach. Thus, it approximates the continuous distribution of natural ecosystems, in contrast to hard or categorical classification approaches. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrillo, E.; Alessi, N.; Álvarez-Martínez, J.M.; Casella, L.; Filipponi, F.; Lu, B.; Niculescu, S.; Šibíková, M.; Smith, K.E.L. Editorial for Special Issue: “New Insights into Ecosystem Monitoring Using Geospatial Techniques”. Remote Sens. 2022, 14, 2346. https://doi.org/10.3390/rs14102346
Agrillo E, Alessi N, Álvarez-Martínez JM, Casella L, Filipponi F, Lu B, Niculescu S, Šibíková M, Smith KEL. Editorial for Special Issue: “New Insights into Ecosystem Monitoring Using Geospatial Techniques”. Remote Sensing. 2022; 14(10):2346. https://doi.org/10.3390/rs14102346
Chicago/Turabian StyleAgrillo, Emiliano, Nicola Alessi, Jose Manuel Álvarez-Martínez, Laura Casella, Federico Filipponi, Bing Lu, Simona Niculescu, Mária Šibíková, and Kathryn E. L. Smith. 2022. "Editorial for Special Issue: “New Insights into Ecosystem Monitoring Using Geospatial Techniques”" Remote Sensing 14, no. 10: 2346. https://doi.org/10.3390/rs14102346
APA StyleAgrillo, E., Alessi, N., Álvarez-Martínez, J. M., Casella, L., Filipponi, F., Lu, B., Niculescu, S., Šibíková, M., & Smith, K. E. L. (2022). Editorial for Special Issue: “New Insights into Ecosystem Monitoring Using Geospatial Techniques”. Remote Sensing, 14(10), 2346. https://doi.org/10.3390/rs14102346