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1. Introduction

Recent global-scale environmental issues from climate change to biodiversity loss are
generating an intense social pressure on the scientific community [1]. A growing need
for information on environmental topics with appropriate reliability and suitable spatial
scalability (from local to global analysis and vice versa) is spreading among societies [2].

The availability of huge amounts of environmental data allows the use of advanced
analytic techniques that can provide useful information from a variety of large datasets,
including those observing and measuring the ecosystem processes in response to envi-
ronmental drivers [3]. A multidisciplinary approach, including artificial intelligence, big
data analytics, and ecological modelling, is highly recommended to interpret ecological
processes and identify adequate solutions for the environmental issues of the Anthro-
pocene [4]. However, the use of big data today generated by different sources represents
a big challenge, from detailed analysis on specific topics or geographic areas to issues at
wider scales and over broader timescales [5].

Earth Observation (EO) data acquired by satellite sensors offer new opportunities
for the ecology sciences and are revolutionizing the methodologies applied, from exper-
imental/theoretical to computational science [6], projecting big data from space in the
mainstream of ecological analysis.

It is therefore easily foreseeable that, in the next decades, new technologies will affect
the activities on ecosystem survey, mapping, and monitoring, opening a new era. The
reasons are first linked to the requirements of global, continental, and national policies on
the environment sustainability, such as those stated in the 2030 Agenda for Sustainable
Development, that gave a new stimulus to improve ecological research in this direction [7,8].
The increasing demand from national institutions for updated information to monitor
ecosystems and detect their changes in time and space plays a crucial role in demonstrating
mapping products as an essential tool for biodiversity assessments [9]. Indeed, in the light of
“Biological Diversity” concept (see Convention on Biological Diversity: https://www.cbd.
int/convention/text/ (accessed on 1 May 2022)), habitats are cardinal pieces for quantitative
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estimations of biodiversity at local and global scales. They are basic units of ecosystems
and biomes identified by abiotic environmental factors, such as climate, geomorphology,
pedology, as well as by plant species composition (i.e., vegetation units) [10].

In this direction, this Special Issue aims to compile research papers dealing with
both methodologies of remote sensing and implementation of research results to facilitate
the environmental monitoring, using geospatial techniques, in several ecosystems (e.g.,
wetland, coastal, estuarine, forest, shrubland, and alpine grasslands) or for land use and
land cover (LULC) changes analysis. Altogether, in this Special Issue, nine papers are
published, and the results obtained are implemented along two continents, using remote
sensing platforms such as Landsat (i.e., 5TM, 7ETM+ and 8OLI), Sentinel (2A/2B MSI),
World-View, and SPOT 5 imageries or hyperspectral imagery from proximal sensors by
airborne vehicles (i.e., helicopter). Among the methods used to process the remotely sensed
data, the increasing focus on the use of machine learning algorithm models such as Random
Forests (RF), Support Vector Machine (SVM), Linear Regression (LR), Convolutional Neural
Network (CNN), and Deep Learning (DL) classifier is noteworthy. In Table 1, the key
message of all published papers is summarized. More detailed information on each article
published in this Special Issue is given below in order of the publication date.

Table 1. Topics and main findings covered in the Special Issue on “New Insights into Ecosystem
Monitoring Using Geospatial Techniques”.

Reference Study Area Remote Sensing
Data/Equipment Target Ecosystem Implementation on

Ecosystem Monitoring

From Forest Dynamics
to Wetland Siltation in

Mountainous
Landscapes: A

RS-Based Framework
for Enhancing Erosion

Control.
Hernández-Romero, G.,
et al.-https://doi.org/

10.3390/rs14081864
(accessed on 1 May

2022)

Spain
Landsat TM, ETM+,

OLI and Sentinel
2A/2B MSI

Natural forests in
hillslopes and
riparian areas

Proposed a method-ology to
optimize investment for
erosion prevention and

wetland conservation by
using only very specific areas
of the landscape for habitat

management (e.g., for
Nature-Base Solution

implementation).

Assessing the Impacts
of Species Composition

on the Accuracy of
Mapping Chlorophyll

Content in
Heterogeneous

Ecosystems.
Lu, B.,

et al.-https://doi.org/
10.3390/rs13224671
(accessed on 1 May

2022)

Canada
Micro-HyperSpec by
Headwall Photonics

Inc. (Boston, MA, USA)
Grassland

Species-specific models for
estimating chlorophyll

content were developed and
used to generate a

chlorophyll content map of a
heterogeneous grassland.

Impacts of species
composition on the retrieval
of chlorophyll content were

investigated to support
future chlorophyll mapping
in heterogeneous ecosystems
and contribute to eco-system

management.

https://doi.org/10.3390/rs14081864
https://doi.org/10.3390/rs14081864
https://doi.org/10.3390/rs13224671
https://doi.org/10.3390/rs13224671


Remote Sens. 2022, 14, 2346 3 of 7

Table 1. Cont.

Reference Study Area Remote Sensing
Data/Equipment Target Ecosystem Implementation on

Ecosystem Monitoring

Mapping and Monitoring
of Land Cover/Land Use
(LCLU) Changes in the

Crozon Peninsula
(Brittany, France) from

2007 to 2018 by Machine
Learning Algorithms

(Support Vector Machine,
Random Forest, and

Convolutional Neural
Network) and by
Post-classification
Comparison (PCC)

Xie, G., et al.-https://doi.
org/10.3390/rs13193899
(accessed on 1 May 2022)

France SPOT-5 and Sentinel
2A/2B MSI

Coastal: cliffs, dunes,
moors, peat bogs, and

wetlands

Recommendations for
further studies on LCLU
changes: applying more

vegetation indices or using
hyperspectral images to

differentiate between
vegetation and planted

croplands; exploring the
potential of

synthetic-aperture radar
images as a supplement to

the traditional optical
images on cloudy seasons.

Satellite-Derived Barrier
Response and Recovery
Following Natural and

Anthropogenic
Perturbations, Northern

Chandeleur Islands,
Louisiana

Bernier, J. C.,
et al.-https://doi.org/10

.3390/rs13183779
(accessed on 1 May 2022)

United State Landsat TM, ETM+
and OLI

Coastal Island and
estuarine habitat

Results presented reveal
along-shore-variable
patterns of landscape

response to both natural
(storm) and anthropogenic

(berm emplacement)
perturbations at annual to
decadal scales and provide
new data that demonstrate

the importance of
vegetative controls on

barrier shoreline change,
transgression, and coastal

landscape evolution.
NaturaSat—A Software
Tool for Identification,

Monitoring and
Evaluation of Habitats by

Remote Sensing
Techniques
Mikula, K.,

et al.-https://doi.org/10
.3390/rs13173381

(accessed on 1 May 2022)

Slovakia Sentinel 2A/2B MSI
Habitat types sensu

Habitats Directive EC
92/43

A software (NaturaSat)
useful for habitat

detec-tion, at high spatial
res-olution that could be

used in nature
conser-vation practices,

such as identifying
ecosystem services,

conservation value, and
land-scape ecology studies.

Coastal Wetland
Shoreline Change

Monitoring: A
Comparison of
Shorelines from
High-Resolution

WorldView Satellite
Imagery, Aerial Imagery,

and Field Surveys
Smith, K. E. L.,

et al.-https://doi.org/10
.3390/rs13153030

(accessed on 1 May 2022)

United State WorldView-2 and
WorldView-3 Coastal wetland

High-resolution satellite
imagery can increase the

spatial scale-range of
shoreline change

monitoring, provide rapid
response to estimate

impacts of coastal erosion,
and reduce cost of

labor-intensive practices.

https://doi.org/10.3390/rs13193899
https://doi.org/10.3390/rs13193899
https://doi.org/10.3390/rs13183779
https://doi.org/10.3390/rs13183779
https://doi.org/10.3390/rs13173381
https://doi.org/10.3390/rs13173381
https://doi.org/10.3390/rs13153030
https://doi.org/10.3390/rs13153030
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Table 1. Cont.

Reference Study Area Remote Sensing
Data/Equipment Target Ecosystem Implementation on

Ecosystem Monitoring

Spatiotemporal
Modeling of Coniferous
Forests Dynamics along

the Southern Edge of
Their Range in the

Central Russian Plain
Chernenkova, T.,

et al.-https://doi.org/
10.3390/rs13101886
(accessed on 1 May

2022)

Russia Landsat TM Forest

Importance of permanent
update of remote and field

data for assessment of forest
management regime

Earth Observation and
Biodiversity Big Data

for Forest Habitat
Types Classification

and Mapping
Agrillo., E.,

et al.-https://doi.org/
10.3390/rs13071231
(accessed on 1 May

2022)

Italy Sentinel 2A/2B MSI Forest

Novel approach for a
spatially explicit habitat
mapping in Italy, using a

supervised machine learning
model (SMLM), through the
combination of vegetation
plot database (as response
variable), and both spectral

and environmental
predictors.

Surface Tradeoffs and
Elevational Shifts at the
Largest Italian Glacier:
A Thirty-Years Time

Series of
Remotely-Sensed

Images
Alessi, N.,

et al.-https://doi.org/
10.3390/rs13010134
(accessed on 1 May

2022)

Italy Landsat TM
and ETM+

Alpine ecosystems:
forest, grassland,

periglacial

Workflow allows to compare
the geographical extension of

different terrestrial
ecosystems across time using

a fuzzy approach. Thus, it
approximates the continuous

distribution of natural
ecosystems, in contrast to

hard or categorical
classification approaches.

2. Overview of Contributions

The follow is the synthesis of results obtained in each paper published in the SI “New
Insights into Ecosystem Monitoring Using Geospatial Techniques”.

G. Hernández-Romero et al. [11] introduced a study aiming at applying an RS frame-
work useful to identify suitable locations related to the conservation and restoration of
natural forests in hillslopes and riparian areas. The combination of information about
LULC dynamics, wetland distribution, and erosion processes has allowed establishing
an innovative spatially explicit RS-based workflow that allows addressing potential eco-
logical and hydrological problems of wetlands in mountainous environments by using
nature-based solutions related to forest ecosystems.

Mapping species-specific chlorophyll content in a heterogeneous grassland using
high-spatial resolution hyperspectral images was investigated in a study by B. Lu et al. [12].
This research aimed to better retrieve vegetation chlorophyll content of different species.
Overall, the utilization of species-specific models is recommended for mapping vegetation
properties in heterogeneous ecosystems.

The research of G. Xie et al. [13] was aimed to study multiannual changes in LCLU
in the Crozon Peninsula, an area that has mainly been marked by conversion between
three types of LCLU, i.e., cropland, urban, and vegetation, in recent years, especially from
2007 to 2018. The challenge of this research was to deal with multiannual changes of a
coastal area with different shapes and patterns by combining machine learning methods

https://doi.org/10.3390/rs13101886
https://doi.org/10.3390/rs13101886
https://doi.org/10.3390/rs13071231
https://doi.org/10.3390/rs13071231
https://doi.org/10.3390/rs13010134
https://doi.org/10.3390/rs13010134
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with PCC. Although high classification accuracy was observed, several uncertainties and
limitations persisted, such as misclassification: classifications were based on images with
different spatial resolutions, cloud-free satellite images during the growing season. Hence,
some recommendations can be made for further studies, such as applying more vegetation
indices or using hyperspectral images and exploring the synthetic-aperture radar images.

The goal of the study of J. C. Bernier et al. [14] was to provide a comprehensive analysis
of recent landscape-scale changes along the northern Chandeleur Islands using a consistent
dataset and methodology to better understand temporal and spatial variability in barrier
response to natural and anthropogenic disturbances over the past few decades. The results
presented in this study demonstrate that automated thresholding algorithms can be applied
to multiple spectral indices derived from medium-resolution Landsat satellite imagery to
rapidly delineate land-cover classes and barrier-island extents at the landscape scale.

In K. Mikula et al. [15], it was presented that the NaturaSat software aims to integrate
image-processing knowledge and various techniques together with vegetation science, into
one multipurpose tool that is designed for performing facilities for all the requirements
of habitat exploration in one place. The results obtained show that NaturaSat software
implements new powerful tools, such as the semi-automatic and automatic segmentation
RS imageries methods and natural numerical networks. It is robust enough for vegetation
scientists and nature conservationists to accurately extract target units’ borders, even at the
habitat level.

With the introduction of high-resolution satellite imagery with frequent return inter-
vals, satellite-derived wetland shoreline data could provide the same spatial and temporal
detail as other sources of data, including field-based Global Positioning System (GPS) or
aerial imagery-derived shoreline data, but gain greater spatial coverage and reduce the
cost of shoreline monitoring by either replacing GPS field surveys or reducing the necessity
of survey frequency. K. E. L. Smith et al. [16] showed the results of a semi-automated
procedure to map wetland shorelines from WV imageries and compared them to con-
temporaneous shoreline data from GPS and digitized aerial imagery for study sites at
the Grand Bay National Estuarine Research Reserve, Moss Point, MS, USA. The availabil-
ity of high-resolution satellite imagery and new developments in rapid image analysis
techniques can help fill the data gap and provide critical information for coastal wetland
monitoring programs.

In T. Chernenkova et al. [17], the aim of the study published was to perform a vegeta-
tion mapping and to identify coniferous forests dynamics in the central Russian Plain at
the edge of large metropolis influence (case study in Moscow). This study is based on both
field and remote sensing data. The results obtained will contribute to the development of
plans for sustainable management and conservation of forest biodiversity under different
management scenarios.

A novel approach for a spatially explicit habitat mapping of forest in Italy using a
supervised machine learning model and the combination of a vegetation dataset, high
resolution EO data, and environmental variables was presented by E. Agrillo et al. [18].
The obtained results could be useful for monitoring the spatial patterns of ecosystems in
space and time. The approach presented will allow an information technology procedure
to be sped up with annual or seasonal updating, depending on the extension of the study
area and the monitoring objectives. The obtained procedures could be applied on several
environmental data in order to cyclically and promptly repeat spatial analysis to detect
changes in space and time in support of ecosystem conservation issues, especially to
evaluate the impact of illegal actions (e.g., forest harvesting) or natural hazards (e.g.,
destructive storms or other natural disasters) on habitat distribution.

N. Alessi et al. [19] presented a fuzzy classification of terrestrial ecosystems in a moun-
tain environment. Using different remotely sensed indices, the authors use an unsupervised
clustering to implement a temporal comparison among clustered pixels. The obtained
clusters were assigned to terrestrial ecosystems based on ground observation of vegetation.
The study reports an increase in the forested area to the detriment of grassland, and an
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expansion of ice-free area due to the retreat of the mountain glacier. The presented approach
allows monitoring terrestrial ecosystems in space and time based on their characteristic
spectral signal.

All the above-mentioned studies confirm the great potential of using geospatial tech-
niques for ecosystem monitoring. We hope that the results and findings shown here
will encourage further research and the land managers of the importance and benefits
of better integration of remote sensing data on operational monitoring and surveillance
of ecosystems.
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