Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: African Continent
2.2. Data
2.3. Methodology
2.3.1. Rainfall Data Pre-Processing
2.3.2. Mann–Kendall’s Trend Test
2.3.3. Sen’s Slope Estimate
3. Results
3.1. Long-Term Monthly Rainfall Distribution in Africa
3.2. Long-Term Seasonal Rainfall Distribution
3.3. Long-Term Annual Rainfall Distribution
3.4. Country-Level Annual Rainfall Variability from 1983 to 2020
3.5. Time-Series Rainfall Variability Comparison of Countries with Reference to African Regions
3.6. Descriptive Statistics
4. Discussion
4.1. Annual and Monthly Rainfall Trend of African Regions
4.2. Annual and Monthly Rainfall Trend of Climatic Zones
4.3. Annual Rainfall Trend in Major River Basins and Countries
4.4. Seasonal Rainfall Trends by Regions, Climatic Zones, River Basins, and Countries of Africa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Country | Average | Max | Min | STD | CV | Median |
---|---|---|---|---|---|---|
Algeria | 121.3 | 186.6 | 75.5 | 23.0 | 19.0 | 120.1 |
Angola | 1026.4 | 1253.6 | 826.4 | 106.8 | 10.4 | 1017.5 |
Benin | 1083.2 | 1266.7 | 736.7 | 104.9 | 9.7 | 1076.7 |
Botswana | 371.2 | 657.1 | 198.9 | 115.8 | 31.2 | 345.8 |
Burkina Faso | 739.4 | 852.7 | 581.6 | 52.4 | 7.1 | 731.6 |
Burundi | 968.6 | 1263.7 | 700.2 | 148.6 | 15.3 | 955.0 |
Cameroon | 1670.3 | 1909.1 | 1193.0 | 153.7 | 9.2 | 1708.2 |
Central African Republic ** | 1439.9 | 1721.6 | 1036.2 | 167.6 | 11.6 | 1486.0 |
Chad | 309.9 | 386.1 | 206.6 | 40.7 | 13.1 | 315.6 |
Congo | 1665.5 | 2074.5 | 1141.3 | 189.4 | 11.4 | 1663.7 |
Côte d’Ivoire | 1276.4 | 1538.0 | 834.7 | 152.4 | 11.9 | 1263.2 |
Democratic Republic of the Congo *** | 1611.2 | 1807.3 | 1266.1 | 130.8 | 8.1 | 1644.2 |
Egypt | 39.1 | 74.2 | 22.5 | 12.1 | 31.0 | 37.7 |
Equatorial Guinea | 2223.5 | 2700.6 | 1420.4 | 309.3 | 13.9 | 2271.2 |
Eritrea | 326.7 | 443.1 | 188.3 | 54.2 | 16.6 | 329.3 |
Ethiopia | 816.1 | 1088.3 | 561.4 | 111.1 | 13.6 | 816.7 |
Gabon | 1825.4 | 2312.9 | 1169.1 | 254.3 | 13.9 | 1899.4 |
Gambia | 770.6 | 921.0 | 580.4 | 80.3 | 10.4 | 773.7 |
Ghana | 1195.4 | 1413.8 | 776.2 | 136.4 | 11.4 | 1211.9 |
Guinea | 1706.2 | 1901.5 | 1523.0 | 92.1 | 5.4 | 1728.1 |
Kenya | 571.0 | 1001.9 | 356.4 | 152.2 | 26.7 | 517.6 |
Lesotho | 702.9 | 860.3 | 551.5 | 81.2 | 11.5 | 697.7 |
Liberia | 2381.2 | 3075.2 | 1653.8 | 325.0 | 13.6 | 2377.5 |
Libya | 61.9 | 115.0 | 29.8 | 16.0 | 25.9 | 62.4 |
Madagascar | 1205.8 | 1503.8 | 947.8 | 132.3 | 11.0 | 1195.7 |
Malawi | 939.0 | 1193.1 | 699.8 | 126.4 | 13.5 | 946.3 |
Mali | 307.8 | 371.0 | 239.8 | 32.3 | 10.5 | 304.4 |
Mauritania | 111.2 | 166.6 | 65.2 | 22.9 | 20.6 | 107.9 |
Morocco | 299.9 | 581.2 | 157.9 | 87.3 | 29.1 | 299.0 |
Mozambique | 807.6 | 1076.7 | 577.0 | 121.5 | 15.1 | 808.2 |
Namibia | 243.9 | 497.7 | 122.3 | 86.6 | 35.5 | 234.9 |
Niger | 141.5 | 177.7 | 79.9 | 23.2 | 16.4 | 143.7 |
Nigeria | 1189.5 | 1338.0 | 865.7 | 84.4 | 7.1 | 1196.0 |
Rwanda | 909.3 | 1248.6 | 554.2 | 174.8 | 19.2 | 923.1 |
Senegal | 607.3 | 728.9 | 456.2 | 61.3 | 10.1 | 606.2 |
Sierra Leone | 2561.0 | 2841.0 | 2214.5 | 175.8 | 6.9 | 2556.4 |
Somalia | 311.2 | 690.7 | 172.6 | 109.2 | 35.1 | 291.3 |
South Africa | 415.4 | 517.9 | 317.4 | 45.6 | 11.0 | 415.9 |
South Sudan | 1011.3 | 1146.1 | 842.8 | 82.0 | 8.1 | 1013.3 |
Sudan | 237.6 | 293.4 | 138.3 | 33.7 | 14.2 | 242.3 |
Swaziland | 712.4 | 1065.7 | 408.9 | 130.6 | 18.3 | 719.1 |
Togo | 1213.2 | 1414.9 | 813.1 | 122.3 | 10.1 | 1222.7 |
Tunisia | 255.0 | 328.8 | 178.1 | 37.2 | 14.6 | 252.1 |
Uganda | 1262.5 | 1531.1 | 980.0 | 148.6 | 11.8 | 1254.5 |
United Republic of Tanzania * | 872.3 | 1218.6 | 671.7 | 132.4 | 15.2 | 858.9 |
Western Sahara | 55.1 | 100.9 | 18.7 | 19.3 | 35.0 | 55.1 |
Zambia | 981.3 | 1163.6 | 742.3 | 100.9 | 10.3 | 992.2 |
Zimbabwe | 601.4 | 840.6 | 382.0 | 120.1 | 20.0 | 589.7 |
Region | Average | Max | Min | STD | CV | Median |
---|---|---|---|---|---|---|
Central | 1243.65 | 1414.44 | 941.79 | 111.81 | 8.99 | 1258.47 |
Western | 625.89 | 709.36 | 464.51 | 46.27 | 7.39 | 626.00 |
Eastern | 786.97 | 991.73 | 619.35 | 86.40 | 10.98 | 784.34 |
Northern | 136.06 | 181.98 | 83.92 | 19.34 | 14.21 | 137.67 |
Southern | 361.34 | 539.34 | 238.74 | 64.35 | 17.81 | 346.92 |
References
- IPCC. Climate Change: The Physical Science Basis; Solomon, S., Ed.; 2007; p. 1007. Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 10 June 2021).
- IPCC. Climate Change: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 10 June 2021).
- United Nations International Strategy for Disaster Reduction (UNISDR). Making Development Sustainable: The Future of Disaster Risk Management; Global Assessment Report 2015; UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2010, 13, 587–605. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. GeoJournal 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.M.; Da Veiga, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An. Acad. Bras. Ciênc. 2020, 92, e20191375. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, J.-L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Ward, M.; Tulloch, A.I.T.; Radford, J.Q.; Williams, B.A.; Reside, A.E.; Macdonald, S.L.; Mayfield, H.J.; Maron, M.; Possingham, H.P.; Vine, S.J.; et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 2020, 4, 1321–1326. [Google Scholar] [CrossRef]
- Libonati, R.; Pereira, J.M.C.; Da Camara, C.C.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.; Machado-Silva, F.; et al. Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci. Rep. 2021, 11, 4400. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- Hulme, P.E. Adapting to climate change: Is there scope for ecological management in the face of a global threat? J. Appl. Ecol. 2005, 42, 784–794. [Google Scholar] [CrossRef]
- ForestPlots.net; Blundo, C.; Carilla, J.; Grau, R.; Malizia, A.; Malizia, L.; Osinaga-Acosta, O.; Bird, M.; Bradford, M.; Catchpole, D.; et al. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biol. Conserv. 2021, 260, 108849. [Google Scholar] [CrossRef]
- Ebhuoma, E.; Simatele, D. Defying the odds: Climate variability, asset adaptation and food security nexus in the Delta State of Nigeria. Int. J. Disaster Risk Reduct. 2017, 21, 231–242. [Google Scholar] [CrossRef]
- Lawrimore, J.H.; Halpert, M.S.; Bell, G.D.; Menne, M.J.; Lyon, B.; Schnell, R.C.; Gleason, K.L.; Easterling, D.R.; Thiaw, W.; Wright, W.J. Climate assessment for 2000. Bull. Am. Meteorol. Soc. 2001, 82, S1–S62. [Google Scholar] [CrossRef] [Green Version]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Clim. 2001, 21, 1889–1922. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Brunetti, M.; de Luis, M. A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945–November 2005). Int. J. Clim. 2011, 31, 715–731. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Clim. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Norrant, C.; Douguédroit, A. Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor. Appl. Clim. 2005, 83, 89–106. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M. Precipitation change in Southern Italy linked to global scale oscillation indexes. Nat. Hazards Earth Syst. Sci. 2011, 11, 1683–1694. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [Green Version]
- Alahacoon, N.; Edirisinghe, M. Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- Barrios, S.; Bertinelli, L.; Strobl, E. Trends in Rainfall and Economic Growth in Africa: A Neglected Cause of the African Growth Tragedy. Rev. Econ. Stat. 2010, 92, 350–366. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of Food and Agriculture 2014. Innovation in Family Farming; FAO: Rome, Italy, 2014. [Google Scholar]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Sidibe, M.; Dieppois, B.; Eden, J.; Mahé, G.; Paturel, J.-E.; Amoussou, E.; Anifowose, B.; Van De Wiel, M.; Lawler, D. Near-term impacts of climate variability and change on hydrological systems in West and Central Africa. Clim. Dyn. 2020, 54, 2041–2070. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M.; Diedhiou, A. Investigating West African Monsoon Features in Warm Years Using the Regional Climate Model RegCM4. Atmosphere 2019, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Vischel, T.; Panthou, G.; Peyrillé, P.; Roehrig, R.; Quantin, G.; Lebel, T.; Wilcox, C.; Beucher, F.; Budiarti, M. Precipitation extremes in the West African Sahel: Recent evolution and physical mechanisms. In Tropical Extremes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 95–138. [Google Scholar]
- Biasutti, M. Rainfall trends in the African Sahel: Characteristics, processes, and causes. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, 591. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E.; Klotter, D.A. Assessing the Reliability of Satellite and Reanalysis Estimates of Rainfall in Equatorial Africa. Remote Sens. 2021, 13, 3609. [Google Scholar] [CrossRef]
- Endris, H.S.; Omondi, P.; Jain, S.L.; Lennard, C.; Hewitson, B.; Chang’A, L.; Awange, J.; Dosio, A.; Ketiem, P.; Nikulin, G.; et al. Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J. Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Clim. Dyn. 2016, 46, 2821–2846. [Google Scholar] [CrossRef]
- Fer, I.; Tietjen, B.; Jeltsch, F.; Wolff, C. The influence of El Niño–Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario. Biogeosciences 2017, 14, 4355–4374. [Google Scholar] [CrossRef] [Green Version]
- Mpelasoka, F.; Awange, J.L.; Zerihun, A. Influence of coupled ocean-atmosphere phenomena on the Greater Horn of Africa droughts and their implications. Sci. Total Environ. 2018, 610–611, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Hoskins, B.; Slingo, J. Exploring the Interplay between Natural Decadal Variability and Anthropogenic Climate Change in Summer Rainfall over China. Part I: Observational Evidence. J. Clim. 2011, 24, 4584–4599. [Google Scholar] [CrossRef]
- Mahmud, M.R.; Numata, S.; Matsuyama, H.; Hosaka, T.; Hashim, M. Challenge and opportunities of space-based precipitation radar for spatio-temporal hydrology analysis in tropical maritime influenced catchment: Case study on the hilly tropical watershed of Peninsular Malaysia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuching, Malaysia, 26–29 August 2013; IOP Publishing: Bristol, UK, 2014; Volume 18, p. 12001. [Google Scholar]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap22_FINAL.pdf (accessed on 15 May 2021).
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African Climate Change: Taking the Shorter Route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Wodon, Q.; Liverani, A.; Joseph, G.; Bougnoux, N. (Eds.) Climate Change and Migration: Evidence from the Middle East and North Africa; World Bank Publications: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Liebmann, B.; Hoerling, M.P.; Funk, C.; Bladé, I.; Dole, R.M.; Allured, D.; Quan, X.; Pegion, P.; Eischeid, J.K. Understanding Recent Eastern Horn of Africa Rainfall Variability and Change. J. Clim. 2014, 27, 8630–8645. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African Long Rains in Observations and Models. J. Clim. 2014, 27, 7185–7202. [Google Scholar] [CrossRef]
- Maidment, R.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. Erratum: A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Cattani, E.; Merino, A.; Guijarro, J.A.; Levizzani, V. East Africa Rainfall Trends and Variability 1983–2015 Using Three Long-Term Satellite Products. Remote Sens. 2018, 10, 931. [Google Scholar] [CrossRef] [Green Version]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present. J. Appl. Meteorol. Clim. 2014, 53, 2805–2822. [Google Scholar] [CrossRef] [Green Version]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.I.F.; Allan, R.; Greatrex, H.; Rojas, O.; Leo, O. Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteorol. Appl. 2012, 20, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Pfeifroth, U.; Trentmann, J.; Fink, A.H.; Ahrens, B. Evaluating Satellite-Based Diurnal Cycles of Precipitation in the African Tropics. J. Appl. Meteorol. Clim. 2016, 55, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Toté, C.; Patricio, D.; Boogaard, H.; Van Der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.; Adler, R.F.; North, G.R. A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite. Bull. Am. Meteorol. Soc. 1988, 69, 278–295. [Google Scholar] [CrossRef] [Green Version]
- Arkin, P.A.; Xie, P. The Global Precipitation Climatology Project: First Algorithm Intercomparison Project. Bull. Am. Meteorol. Soc. 1994, 75, 401–419. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Arakawa, O.; Kamiguchi, K.; Kawamoto, H.; Nodzu, M.I.; Hamada, A. A 44-Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Sola 2009, 5, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Hsu, K.-L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Kinda, S.R.; Badolo, F. Does rainfall variability matter for food security in developing countries? Cogent Econ. Financ. 2019, 7, 1640098. [Google Scholar] [CrossRef]
- Rockström, J.; Barron, J.; Fox, P. Water productivity in rain-fed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publishing: Wallingford, UK, 2009; pp. 145–162. [Google Scholar]
- FAO; IFAD; WFP. The State of Food Insecurity in the World 2014. Strengthening the Enabling Environment for Food Security and Nutrition; FAO: Rome, Italy, 2014; Available online: https://www.fao.org/3/i4030e/i4030e.pdf (accessed on 18 June 2021).
- Wani, S.P.; Rockström, J.; Oweis, T.Y. (Eds.) Rainfed Agriculture: Unlocking the Potential; CABI: Wallingford, UK, 2009; Volume 7, Available online: http://www.iwmi.cgiar.org/Publications/CABI_Publications/CA_CABI_Series/Rainfed_Agriculture/Protected/Rainfed_Agriculture_Unlocking_the_Potential.pdf (accessed on 10 June 2021).
- Kyei-Mensah, C.; Kyerematen, R.; Adu-Acheampong, S. Impact of Rainfall Variability on Crop Production within the Worobong Ecological Area of Fanteakwa District, Ghana. Adv. Agric. 2019, 2019, 7930127. [Google Scholar] [CrossRef] [Green Version]
- Adeyewa, Z.D.; Nakamura, K. Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteorol. 2003, 42, 331–347. [Google Scholar] [CrossRef]
- Dubois, O. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; Earthscan: London, UK, 2011; Available online: https://www.fao.org/3/i1688e/i1688e01.pdf (accessed on 11 May 2021).
- Qian, H.; Zhou, Y.; Zhang, J.; Jin, Y.; Deng, T.; Cheng, S. A synthesis of botanical informatics for vascular plants in Africa. Ecol. Inform. 2021, 64, 101382. [Google Scholar] [CrossRef]
- Mendelson, M.; Han, P.V.; Vincent, P.; Von Sonnenburg, F.; Cramer, J.P.; Loutan, L.; Kain, K.; Parola, P.; Hagmann, S.; Gkrania-Klotsas, E.; et al. Regional Variation in Travel-related Illness acquired in Africa, March 1997–May 2011. Emerg. Infect. Dis. 2014, 20, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, K.R.; Shukla, S.; Getirana, A.; Peters-Lidard, C.D.; Kumar, S.; McNally, A.; Zaitchik, B.F.; Badr, H.S.; Funk, C.C.; Koster, R.D.; et al. Using Satellite Data and Land Surface Models to Monitor and Forecast Drought Conditions in Africa and Middle East. In AGU Fall Meeting Abstracts (Vol. 2017, H22F-05); Available online: https://ui.adsabs.harvard.edu/abs/2017AGUFM.H22F..05A/abstract (accessed on 14 July 2021).
- Asfaw, D.; Black, E.; Brown, M.; Nicklin, K.J.; Otu-Larbi, F.; Pinnington, E.; Challinor, A.; Maidment, R.; Quaife, T. TAMSAT-ALERT v1: A new framework for agricultural decision support. Geosci. Model Dev. 2018, 11, 2353–2371. [Google Scholar] [CrossRef] [Green Version]
- Seyama, E.S.; Masocha, M.; Dube, T. Evaluation of TAMSAT satellite rainfall estimates for southern Africa: A comparative approach. Phys. Chem. Earth Parts A/B/C 2019, 112, 141–153. [Google Scholar] [CrossRef]
- Grimes, D.; Pardo-Igúzquiza, E.; Bonifacio, R. Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol. 1999, 222, 93–108. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Shi, P.; Van Gelder, P.H.A.J.M.; Corzo, G. Extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 2323–2360. [Google Scholar]
- Pal, A.B.; Khare, D.; Mishra, P.K.; Singh, L. Trend Analysis of Rainfall, Temperature and Runoff Data: A Case Study of Rangoon Watershed in Nepal. Int. J. Stud. Res. Technol. Manag. 2017, 5, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & Co.: London, UK, 1948. [Google Scholar]
- Gadgil, A.; Dhorde, A. Temperature trends in twentieth century at Pune, India. Atmos. Environ. 2005, 39, 6550–6556. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Stott, P.; Herring, S. Explaining Extreme Events of 2011 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2012, 93, 1041–1067. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Funk, C.C.; Michaelsen, J.; Rauscher, S.A.; Robertson, I.; Wils, T.H.G.; Koprowski, M.; Eshetu, Z.; Loader, N.J. Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Clim. Dyn. 2012, 39, 2307–2328. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrol. Earth Syst. Sci. 2018, 22, 4547–4564. [Google Scholar] [CrossRef] [Green Version]
- Nouaceur, Z.; Murarescu, O. Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa. Int. J. Atmos. Sci. 2016, 2016, 7230450. [Google Scholar] [CrossRef]
Climate Zone | Average | Max | Min | STD | CV | Median |
---|---|---|---|---|---|---|
Tropical Grass Land | 1120.4 | 1294.3 | 861.0 | 88.3 | 7.9 | 1141.9 |
Sub-tropical North Desert | 246.2 | 400.9 | 178.4 | 46.4 | 18.8 | 240.5 |
Tropical Northern Desert | 74.1 | 108.6 | 38.2 | 14.9 | 20.1 | 71.8 |
Tropical Northern Semi-arid | 445.1 | 542.9 | 293.9 | 51.5 | 11.6 | 445.3 |
Tropical Rainforest | 1793.0 | 2108.6 | 1325.0 | 165.7 | 9.2 | 1820.0 |
Southern Tropical Semi-arid | 810.5 | 971.4 | 611.0 | 84.1 | 10.4 | 817.0 |
Southern Tropical Desert | 271.3 | 514.1 | 138.9 | 87.6 | 32.3 | 249.1 |
Sothern Sub-Tropical Desert | 400.7 | 521.3 | 289.5 | 52.3 | 13.1 | 396.0 |
Sothern Sub-Tropical Humid | 549.9 | 641.6 | 445.2 | 48.9 | 8.9 | 550.4 |
Tropical Grass Land (MA *) | 1146.1 | 1418.0 | 886.0 | 135.2 | 11.8 | 1140.1 |
Tropical Northern Semi-arid (MA *) | 523.9 | 771.0 | 268.0 | 116.3 | 22.2 | 529.0 |
Northern Sub-tropical Humid | 447.9 | 662.6 | 317.0 | 82.9 | 18.5 | 441.4 |
Tropical Rainforest (MA *) | 1411.1 | 1779.9 | 910.6 | 179.2 | 12.7 | 1402.8 |
River Basins | Average | Max | Min | STD | CV | Median |
---|---|---|---|---|---|---|
Africa, East Central Coast | 817.3 | 1110.9 | 580.3 | 126.7 | 15.5 | 778.2 |
Africa, Indian Ocean Coast | 649.0 | 1036.3 | 373.3 | 157.6 | 42.2 | 666.9 |
Africa, North Interior | 73.4 | 112.3 | 41.1 | 15.3 | 37.2 | 73.6 |
Africa, North West Coast | 166.8 | 293.7 | 86.4 | 41.4 | 47.9 | 162.4 |
Africa, Red Sea-Aden Coast | 201.9 | 375.6 | 102.7 | 56.0 | 54.5 | 187.4 |
Africa, South Interior | 499.4 | 804.9 | 285.6 | 118.4 | 41.5 | 468.9 |
Africa, West Coast | 1527.6 | 1787.6 | 1120.9 | 140.0 | 12.5 | 1532.7 |
Angola, Coast | 912.6 | 1151.1 | 717.9 | 113.8 | 15.8 | 942.4 |
Congo | 1538.5 | 1740.0 | 1184.1 | 130.4 | 8.5 | 1573.7 |
Gulf of Guinea | 1871.1 | 2233.2 | 1234.1 | 219.4 | 17.8 | 1892.0 |
Lake Chad | 356.0 | 431.6 | 259.5 | 41.9 | 11.8 | 364.4 |
Limpopo | 451.2 | 656.3 | 266.0 | 101.4 | 38.1 | 456.2 |
Madagascar | 1211.6 | 1501.9 | 945.5 | 132.6 | 14.0 | 1203.3 |
Mediterranean South Coast | 292.6 | 399.7 | 218.1 | 47.4 | 21.7 | 284.0 |
Namibia, Coast | 116.5 | 346.1 | 40.8 | 65.2 | 159.7 | 110.4 |
Niger | 666.9 | 755.8 | 519.3 | 44.7 | 6.7 | 671.5 |
Nile | 652.0 | 763.1 | 486.3 | 61.1 | 9.4 | 659.0 |
Orange | 304.9 | 452.2 | 196.7 | 55.9 | 18.3 | 300.4 |
Rift Valley | 734.1 | 983.4 | 532.6 | 99.4 | 18.7 | 714.0 |
Senegal | 492.6 | 578.8 | 404.2 | 42.9 | 8.7 | 489.6 |
Shebelli–Juba | 488.4 | 1015.6 | 308.7 | 150.6 | 48.8 | 454.7 |
South Africa, South Coast | 560.2 | 656.6 | 451.2 | 46.8 | 10.4 | 561.5 |
South Africa, West Coast | 183.1 | 290.9 | 113.5 | 48.9 | 43.1 | 169.4 |
Volta | 959.3 | 1101.7 | 689.7 | 74.5 | 10.8 | 961.2 |
Zambezi | 884.2 | 1050.1 | 643.6 | 100.0 | 11.3 | 895.7 |
Basin Name | Kendall’s Tau | p-Value | Sen’s Slope |
---|---|---|---|
Africa, East Central Coast | 0.147 | 0.205 | 2.036 |
Africa, Indian Ocean Coast | 0.087 | 0.381 | 1.619 |
Africa, North Interior | 0.441 | <0.001 | 0.842 |
Africa, North West Coast | 0.198 | 0.087 | 1.141 |
Africa, Red Sea—Gulf of Aden Coast | 0.447 | <0.001 | 2.658 |
Africa, South Interior | 0.315 | 0.006 | 4.977 |
Africa, West Coast | 0.168 | 0.147 | 2.962 |
Angola, Coast | 0.330 | 0.001 | 5.112 |
Congo | 0.565 | <0.001 | 8.512 |
Gulf of Guinea | 0.321 | 0.005 | 8.713 |
Lake Chad | 0.679 | <0.001 | 2.895 |
Limpopo | 0.222 | 0.055 | 3.184 |
Madagascar | 0.156 | 0.178 | 2.643 |
Mediterranean South Coast | 0.171 | 0.139 | 1.158 |
Namibia, Coast | 0.084 | 0.472 | 0.506 |
Niger | 0.453 | <0.001 | 2.161 |
Nile | 0.610 | <0.001 | 4.124 |
Orange | 0.324 | 0.005 | 2.200 |
Rift Valley | 0.426 | 0.001 | 5.394 |
Senegal | 0.309 | 0.007 | 1.825 |
Shebelli—Juba | 0.360 | 0.002 | 6.182 |
South Africa, South Coast | 0.075 | 0.522 | 0.367 |
South Africa, West Coast | −0.081 | 0.507 | −0.360 |
Volta | 0.120 | 0.301 | 1.005 |
Zambezi | 0.198 | 0.087 | 2.558 |
Country | Kendall’s Tau | p-Value | Sen’s Slope | Country | Kendall’s Tau | p-Value | Sen’s Slope |
---|---|---|---|---|---|---|---|
Mozambique | −0.027 | 0.794 | −0.437 | South Africa | 0.261 | 0.024 | 1.389 |
Malawi | −0.021 | 0.842 | −0.238 | Kenya | 0.264 | 0.022 | 4.800 |
Ghana | 0.051 | 0.666 | 1.116 | Nigeria | 0.291 | 0.012 | 2.241 |
Togo | 0.105 | 0.367 | 1.802 | Benin | 0.306 | 0.008 | 3.318 |
Tunisia | 0.108 | 0.168 | 0.663 | Botswana | 0.315 | 0.006 | 4.261 |
Sierra Leone | 0.117 | 0.314 | 3.950 | Cameroon | 0.336 | 0.004 | 5.656 |
Zimbabwe | 0.126 | 0.278 | 2.592 | Burkina Faso | 0.342 | 0.003 | 1.900 |
Morocco | 0.135 | 0.244 | 1.267 | Gabon | 0.348 | 0.003 | 11.041 |
Côte d’Ivoire | 0.138 | 0.234 | 2.230 | Algeria | 0.366 | <0.001 | 1.070 |
Madagascar | 0.156 | 0.178 | 2.638 | Somalia | 0.387 | 0.001 | 4.816 |
Eritrea | 0.177 | 0.126 | 1.278 | Mauritania | 0.435 | <0.000 | 1.207 |
Western Sahara | 0.186 | 0.108 | 0.493 | Ethiopia | 0.444 | <0.001 | 6.003 |
Guinea | 0.201 | 0.082 | 2.468 | Mali | 0.468 | <0.001 | 1.826 |
Liberia | 0.207 | 0.073 | 8.787 | Angola | 0.477 | <0.001 | 6.442 |
Gambia | 0.213 | 0.045 | 1.908 | Congo | 0.477 | <0.001 | 10.046 |
Egypt | 0.216 | 0.061 | 0.378 | Rwanda | 0.480 | <0.001 | 11.973 |
Zambia | 0.237 | 0.040 | 3.197 | Burundi | 0.483 | <0.001 | 10.262 |
Zambia | 0.237 | 0.040 | 2.923 | Sudan | 0.483 | <0.001 | 1.872 |
Equatorial Guinea | 0.240 | 0.038 | 10.842 | Niger | 0.526 | <0.001 | 1.444 |
Libya | 0.240 | 0.038 | 0.479 | CAR ** | 0.550 | <0.001 | 11.167 |
Namibia | 0.246 | 0.033 | 2.988 | DRC *** | 0.565 | <0.001 | 8.777 |
URT * | 0.249 | 0.031 | 4.369 | Uganda | 0.598 | <0.001 | 11.152 |
Senegal | 0.252 | 0.029 | 1.757 | Chad | 0.607 | <0.001 | 2.847 |
South Sudan | 0.619 | <0.001 | 5.937 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahacoon, N.; Edirisinghe, M.; Simwanda, M.; Perera, E.; Nyirenda, V.R.; Ranagalage, M. Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation. Remote Sens. 2022, 14, 96. https://doi.org/10.3390/rs14010096
Alahacoon N, Edirisinghe M, Simwanda M, Perera E, Nyirenda VR, Ranagalage M. Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation. Remote Sensing. 2022; 14(1):96. https://doi.org/10.3390/rs14010096
Chicago/Turabian StyleAlahacoon, Niranga, Mahesh Edirisinghe, Matamyo Simwanda, ENC Perera, Vincent R. Nyirenda, and Manjula Ranagalage. 2022. "Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation" Remote Sensing 14, no. 1: 96. https://doi.org/10.3390/rs14010096
APA StyleAlahacoon, N., Edirisinghe, M., Simwanda, M., Perera, E., Nyirenda, V. R., & Ranagalage, M. (2022). Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation. Remote Sensing, 14(1), 96. https://doi.org/10.3390/rs14010096