Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals
Abstract
:1. Introduction
2. Data and Methodology
2.1. Solar Reference Spectra
2.1.1. KNMI2008 Spectrum
2.1.2. SAO2020 Spectrum
2.1.3. TSIS-1 HSRS Spectrum
2.2. Ozone Profile Retrievals
3. Results
3.1. Comparisons of the High-Resolution Solar References
3.2. Comparison of the Ozone Profile Retrievals with Different Solar Reference Datasets
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, K.; Liu, X.; Huang, G.; Abad, G.G.; Cai, Z.; Chance, K.; Yang, K. Deriving the slit functions from OMI solar observations and its implications for ozone-profile retrieval. Atmos. Meas. Tech. 2017, 10, 3677–3695. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Ahn, M.H.; Liu, X.; Jeong, U.; Kim, J. Spectral calibration algorithm for the geostationary environment monitoring spectrometer (Gems). Remote Sens. 2020, 12, 2846. [Google Scholar] [CrossRef]
- Bak, J.; Liu, X.; Kim, J.-H.; Haffner, D.P.; Chance, K.; Yang, K.; Sun, K. Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals. Atmos. Meas. Tech. 2017, 10, 4373–4388. [Google Scholar] [CrossRef] [Green Version]
- Bak, J.; Liu, X.; Sun, K.; Chance, K.; Kim, J.-H. Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals. Atmos. Meas. Tech. 2019, 12, 3777–3788. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M.; Campbell, P.K.E.; Yoshida, Y.; Kuze, A.; Corp, L.A. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: Simulations and space-based observations from SCIAMACHY and GOSAT. Atmos. Meas. Tech. 2012, 5, 809–829. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.; Chance, K.; Gil, M.; Goutail, F.; Johnston, P.V.; Kostadinov, I.; Leser, H.; Petritoli, A.; Richter, A.; Van Roozendael, M.; et al. Correction of the Ring effect and I0-effect for DOAS observations of scattered sunlight. In Proceedings of the 1st DOAS Workshop, Heidelberg, Germany, 13–14 September 2001. [Google Scholar]
- Liu, C.; Liu, X.; Kowalewski, M.G.; Janz, S.J.; Abad, G.G.; Pickering, K.E.; Chance, K.; Lamsal, L.N. Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign. Atmos. Meas. Tech. 2015, 8, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chance, K.; Sioris, C.E.; Newchurch, M.J.; Kurosu, T.P. Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: A new retrieval method. Appl. Opt. 2006, 45, 2352–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobber, M.; Voors, R.; Dirksen, R.; Kleipool, Q.; Levelt, P. The high-resolution solar reference spectrum between 250 and 550 nm and its application to measurements with the ozone monitoring instrument. Sol. Phys. 2008, 249, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Richard, E.; Harber, D.; Coddington, O.; Drake, G.; Rutkowski, J.; Triplett, M.; Pilewskie, P.; Woods, T. SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 spectral irradiance monitor (SIM). Remote Sens. 2020, 12, 1818. [Google Scholar] [CrossRef]
- Thuillier, G.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the solspec spectrometer from the atlas and eureca missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Hall, L.A.; Anderson, G. High-resolution solar spectrum between 2000 and 3100 Å. J. Geophys. Res. 1991, 96, 12927–12931. [Google Scholar] [CrossRef]
- Coddington, O.M.; Richard, E.C.; Harber, D.; Pilewskie, P.; Woods, T.N.; Chance, K.; Liu, X.; Sun, K. The TSIS-1 Hybrid Solar Reference Spectrum. Geophys. Res. Lett. 2021, 48, e2020GL091709. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, R.L. The solar spectrum: Atlases and line identifications. In Laboratory and Astronomical High Resolution Spectra; Astronomical Society of the Pacific Conference Series 44; Sauval, A.J., Blomme, R., Grevesse, N., Eds.; 1995; Volume 81, pp. 17–31. Available online: http://kurucz.harvard.edu/papers/irradiance/solarirr.tab (accessed on 10 December 2021).
- Kurucz, R.L. High Resolution Irradiance Spectrum from 300 to 1000 nm. In Proceedings of the AFRL Transmission Meeting, Lexington, MA, USA, 15–16 June 2005; Available online: "https://arxiv.org/pdf/astro-ph/0605029.pdf (accessed on 10 December 2021).
- Gröbner, J.; Kröger, I.; Egli, L.; Hülsen, G.; Riechelmann, S.; Sperfeld, P. The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements. Atmos. Meas. Tech. 2017, 10, 3375–3383. [Google Scholar] [CrossRef] [Green Version]
- Floyd, L.; Rottman, G.; Deland, M.; Pap, J. Solar Variability as an input to the Earth’s Environment. In Proceedings of the International Solar Cycle Studies (ISCS) Symposium, Tatranská Lomnica, Slovakia, 23–28 June 2003; Wilson, A., Ed.; ESA SP-535. ESA Publications Division: Noordwijk, The Netherlands, 2003; p. 195. [Google Scholar]
- Toon, G.C. Solar Line List for GGG2014. TCCON Data Archive, Hosted by the Carbon Dioxide Information Analysis Center. Available online: https://doi.org/10.14291/tccon.ggg2014.solar.R0/1221658 (accessed on 10 December 2021).
- Gurlit, W.; Bösch, H.; Bovensmann, H.; Burrows, J.P.; Butz, A.; Camy-Peyret, C.; Dorf, M.; Gerilowski, K.; Lindner, A.; Noël, S.; et al. The UV-A and visible solar irradiance spectrum: Inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements. Atmos. Chem. Phys. 2005, 5, 1879–1890. [Google Scholar] [CrossRef] [Green Version]
- Richard, E.C.; Harber, D.M.; Drake, G.; Rutkowsi, J.; Castleman, Z.; Smith, M.; Sprunck, J.; Zheng, W.; Smith, P.; Fisher, M.; et al. The compact spectral irradiance monitor flight demonstration mission. Proc. SPIE 2019, 11131, 1113105. [Google Scholar] [CrossRef]
- Chance, K.V.; Spurr, R.J.D. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Appl. Opt. 1997, 36, 5224–5230. [Google Scholar] [CrossRef] [Green Version]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Zweers, D.C.S.; Duncan, B.N.; Streets, D.G.; Eskes, H.; McLinden, C.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bhartia, P.K.; Chance, K.; Spurr, R.J.D.; Kurosu, T.P. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2010, 10, 2521–2537. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Liu, Y.; Liu, X.; Chance, K.; Nowlan, C.R.; Lang, R.; Munro, R.; Suleiman, R. Characterization and correction of global ozone monitoring experiment 2 ultraviolet measurements and application to ozone profile retrievals. J. Geophys. Res. Atmos. 2012, 117, 1–16. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Chan Miller, C.; Gonzalez Abad, G.; Wang, H.; Liu, X.; Kurosu, T.; Jacob, D.J.; Chance, K. Glyoxal retrieval from the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2014, 7, 3891–3907. [Google Scholar] [CrossRef] [Green Version]
- González Abad, G.; Liu, X.; Chance, K.; Wang, H.; Kurosu, T.P.; Suleiman, R. Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmos. Meas. Tech. 2015, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Souri, A.H.; González Abad, G.; Liu, X.; Chance, K. Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications. Atmos. Meas. Tech. 2019, 12, 5183–5199. [Google Scholar] [CrossRef] [Green Version]
Input Spectra | Wavelength Range | Spectral Resolution + | Sampling Resolution | Radiometric Accuracy (%) | Wavelength Accuracy (nm) | Ref. | |
---|---|---|---|---|---|---|---|
KNMI2008 | AFGL: 250–303 nm KPNO1995: 295–550 nm | 250–550 nm | 0.025 nm | 0.01 nm | 4–5 | @ 305 nm @ 300 nm | [9] |
SAO2010 | AFGL: 200–305 nm KPNO2005: 300–1000 nm | 200–1000 nm | 0.04 nm | 0.01 nm | 5 | @ < 305 nm @ >305 nm | [10] |
TSIS-1 HSRS a | AFGL: 202–306.5 nm QASUMEFTS: 305.5–373.6 nm KPNO: 373.5–745 nm SPTS b: 743–2730 nm | 202–2730 nm | 0.025 @ < 374 nm0.005 @ > 374 nm | 0.001 nm | 1.3 @ < 400 nm 0.5 @ 400–460 nm 0.3 @ 460–2365 nm 1.3 @ > 2365 nm | Same as input | [14] |
AFGL c | Balloon-borne grating spectrometer | 200–310 nm | 0.01 nm | 0.01 nm | 10–15 | 0.003 | [13] |
KPNO d | Ground-based FTS measurements | 300–1000 nm | 0.005 nm | 0.001 nm | N/A | [15,16] | |
QASUMEFTS e | Ground-based QASUME and FTS measurements | 300–500 nm | 0.025 nm | 0.01 nm | 4 @ < 310 nm2 @ > 310 nm | [17] | |
SUSIM f | Space-borne measurements | 110–410 nm | 0.15 nm | 0.05 nm | 3–4 | 0.035 | [18] |
TSIS-1 SIM g | Space-borne measurements | 200–2400 nm | 0.2–42 nm | 0.04 nm @ 233 nm 0.13 nm @ 354 nm 0.53 nm @ 550 nm 1.94 nm @ 1345 nm | 0.41 @ <460 nm0.24 @ > 460 nm | 0.085% | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bak, J.; Coddington, O.; Liu, X.; Chance, K.; Lee, H.-J.; Jeon, W.; Kim, J.-H.; Kim, C.-H. Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals. Remote Sens. 2022, 14, 37. https://doi.org/10.3390/rs14010037
Bak J, Coddington O, Liu X, Chance K, Lee H-J, Jeon W, Kim J-H, Kim C-H. Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals. Remote Sensing. 2022; 14(1):37. https://doi.org/10.3390/rs14010037
Chicago/Turabian StyleBak, Juseon, Odele Coddington, Xiong Liu, Kelly Chance, Hyo-Jung Lee, Wonbae Jeon, Jae-Hwan Kim, and Cheol-Hee Kim. 2022. "Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals" Remote Sensing 14, no. 1: 37. https://doi.org/10.3390/rs14010037
APA StyleBak, J., Coddington, O., Liu, X., Chance, K., Lee, H. -J., Jeon, W., Kim, J. -H., & Kim, C. -H. (2022). Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals. Remote Sensing, 14(1), 37. https://doi.org/10.3390/rs14010037