A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval
Abstract
:1. Introduction
2. Theory
2.1. Height Variation Error
2.2. Elevation Bending Error
2.3. Tropospheric Delay Error
3. Methods
3.1. Wavelet Analysis Retrieval
3.2. Least-Square Estimation
4. Experimental Analysis
4.1. Site and Data
4.2. Retrieval Results
4.3. Error Analysis
- A.
- Analysis of height variation error
- B.
- Analysis of bending error and tropospheric delay error
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schöne, T.; Schön, N.; Thaller, D. IGS tide gauge benchmark monitoring pilot project (TIGA): Scientific benefits. J. Geod. 2009, 83, 249–261. [Google Scholar] [CrossRef]
- Larson, K.M.; Löfgren, J.S.; Haas, R. Coastal sea level measurements using a single geodetic GPS receiver. Adv. Space Res. 2013, 51, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Martin-Neira, M.A. Passive Reflectometry and Interferometry System (PARIS): Application to Ocean Altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Anderson, K.D. Determination of water level and tides using interferometric observations of GPS signals. J. Atmos Ocean. Technol. 2000, 17, 1118–1127. [Google Scholar] [CrossRef]
- Löfgren, J.S.; Haas, R. Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J. Adv. Signal Proc. 2014, 2015, 50. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.G.; Qian, X.D.; Wu, X. Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation. Glob. Planet. Chang. 2017, 149, 20–25. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Zhang, Q. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval. Remote Sens. Environ. 2019, 231, 111229–111249. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Improving GNSS-R sea level determination through inverse modeling of SNR data. Rad. Sci. 2016, 51, 1286–1296. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, X.; Zhang, Q. Coherent superposition of multi-GNSS wavelet analysis periodogram for sea-level retrieval in GNSS multipath reflectometry. Adv. Space Res. 2020, 65, 1781–1788. [Google Scholar] [CrossRef]
- Löfgren, J.S.; Haas, R.; Scherneck, H.G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J. Geodyn. 2014, 80, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Ray, R.D.; Williams, S. A ten-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J. Atmos Ocean. Technol. 2017, 34, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, J. New Methods and Applications for Interferometric GNSS Reflectometry; Chalmers University of Technology: Gothenburg, Sweden, 2020. [Google Scholar]
- Santamaría-Gómez, A.; Watson, C. Remote leveling of tide gauges using GNSS reflectometry: Case study at Spring Bay, Australia. GPS Solut. 2016, 21, 451–459. [Google Scholar] [CrossRef]
- Williams, S.D.P.; Nievinski, F.G. Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites. J. Geophys. Res. Solid Earth 2017, 122. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Q.; Zhang, S. Sea level estimation from SNR data of geodetic receivers using wavelet analysis. GPS Solut. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zhang, S. Azimuth selection for sea level measurements using geodetic GPS receivers. Adv. Space Res. 2018, 61, 1546–1557. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 302, 757–763. [Google Scholar] [CrossRef]
- Bennett, G.G. The calculation of astronomical refraction in marine navigation. J. Navig. 1982, 35, 255–259. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Boehm, J.; Schuh, H. Vienna mapping functions in VLBI analyses. Geophys. Res. Lett. 2004, 31, 603–608. [Google Scholar] [CrossRef]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111, 406–415. [Google Scholar] [CrossRef]
- Abry, P. Ondelettes et turbulence. In Multirésolutions, Algorithmes de Décomposition, Invariance d’Échelles; Diderot Editeur: Paris, France, 1997. [Google Scholar]
- Roussel, N.; Ramillien, G.; Frappart, F.; Darrozes, J.; Gay, A.; Biancale, R.; Striebig, N.; Hanquiez, V.; Bertin, X.; Allain, D. Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens. Environ. 2015, 171, 261–277. [Google Scholar] [CrossRef]
- Tabibi, S.; Geremia-Nievinski, F.; Dam, T.V. Statistical Comparison and Combination of GPS, GLONASS, and Multi-GNSS Multipath Reflectometry Applied to Snow Depth Retrieval. IEEE Trans. Geosci. Remote Sens. 2017, 1–13. [Google Scholar] [CrossRef]
- Werner, G.; Lou, E. RINEX (The Receiver Independent Exchange Format), Version 3.01. 2009. Available online: ftp://igs.org/pub/data/format/rinex301.pdf (accessed on 20 June 2019).
- Wang, X.; He, X.; Xiao, R.; Song, M.; Jia, D. Millimeter to centimeter scale precision water-level monitoring using GNSS reflectometry: Application to the South-to-North Water Diversion Project, China. Remote Sens. Environ. 2021, 265, 112645. [Google Scholar] [CrossRef]
- Jonscher, A.K. A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 1981, 16, 2037–2060. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6564–6573. [Google Scholar] [CrossRef]
- Martin Miguez, B.; Testut, L.; Wo¨ppelmann, G. The Van de Casteele test revisited: An efficient approach to tide gauge error characterization. J. Atmos. Ocean. Technol. 2008, 25, 1238–1244. [Google Scholar] [CrossRef]
- Peng, D.; Hill, E.M.; Li, L.; Switzer, A.D.; Larson, K.M. Application of GNSS interferometric reflectometry for detecting storm surges. GPS Solut. 2019, 23, 1–11. [Google Scholar] [CrossRef] [Green Version]
System | Frequency Band | Frequency | Signal | Phase Code | SNR Code |
---|---|---|---|---|---|
GPS | L1 | 1575.42 | C/A | L1C | S1C |
L2 | 1227.60 | Z-tracking and similar (AS on) | L2W | S2W | |
L2C (M + L) | L2X | S2X | |||
I + Q | L5X | S5X | |||
GLONASS | G1 | 1602 + k × 9/16 k = −7 … + 12 | C/A | L1C | S1C |
P | L1P | S1P | |||
G2 | 1246 + k × 7/16 | C/A | L2C | S2C | |
P | L2P | S2P | |||
Galileo | E1 | 1575.42 | B + C | L1X | S1X |
E5 | 1176.45 | I + Q | L5X | S5X | |
E7 | 1207.140 | I + Q | L7X | S7X | |
E8 | 1191.795 | I + Q | L8X | S8X |
System | Signal | Number (PCs) | Constant (m) | Inter-Frequency Bias (cm) | RMSE (cm) | CORR (%) |
---|---|---|---|---|---|---|
GPS | L1C/A | 177 | 7.80 + 0.02 | 2 | 21.53 | 90.01 |
L2W | 132 | 7.80−0.08 | −8 | 9.54 | 97.62 | |
L2C | 160 | 7.80−0.09 | −9 | 9.34 | 97.81 | |
L5 | 111 | 7.80−0.10 | −10 | 7.60 | 98.82 | |
GLONASS | L1C | 141 | 7.80 + 0.06 | 6 | 16.77 | 93.32 |
L1P | 175 | 7.80 + 0.06 | 6 | 14.08 | 94.94 | |
L2C | 195 | 7.80−0.10 | −10 | 12.64 | 96.07 | |
L2P | 189 | 7.80−0.09 | −9 | 10.70 | 97.33 | |
Galileo | L1 | 84 | 7.80 + 0.01 | 1 | 15.72 | 95.38 |
L5 | 90 | 7.80−0.08 | −8 | 11.20 | 97.28 | |
L7 | 93 | 7.80−0.10 | −10 | 12.15 | 96.73 | |
L8 | 90 | 7.80−0.10 | −10 | 9.57 | 98.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Niu, Z.; Chen, S.; He, X. A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval. Remote Sens. 2022, 14, 11. https://doi.org/10.3390/rs14010011
Wang X, Niu Z, Chen S, He X. A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval. Remote Sensing. 2022; 14(1):11. https://doi.org/10.3390/rs14010011
Chicago/Turabian StyleWang, Xiaolei, Zijin Niu, Shu Chen, and Xiufeng He. 2022. "A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval" Remote Sensing 14, no. 1: 11. https://doi.org/10.3390/rs14010011
APA StyleWang, X., Niu, Z., Chen, S., & He, X. (2022). A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval. Remote Sensing, 14(1), 11. https://doi.org/10.3390/rs14010011