Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Remote Sensing Data
2.3. Spectral Indices
2.4. Methods for Creating Composites of Exposed Soils
2.4.1. Spectral Indices-Only Approach
2.4.2. Greening-Up Approach
2.5. Composite Surface Cover
2.6. Spectral Models for SOC Prediction
3. Results
3.1. PLSR Models for Single S-2 Acquisition Dates
3.2. PLSR Models for S-2 Composites
3.3. Surface Area Coverage by the Different Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. SDG Indicator 15.3.1. Available online: https://knowledge.unccd.int/topics/sustainable-development-goals-sdgs/sdg-indicator-1531 (accessed on 14 March 2021).
- Nachtergaele, F.; Velthuizen, H.; Verelst, L.; Batjes, N.; Dijkshoorn, K.; Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarela, L.; Petri, M.; et al. The Harmonized World Soil Database; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009; pp. 34–37. [Google Scholar]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil Organic Carbon Estimation in Croplands by Hyperspectral Remote APEX Data Using the LUCAS Topsoil Database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Moura-Bueno, J.M.; Dalmolin, R.S.D.; ten Caten, A.; Dotto, A.C.; Demattê, J.A.M. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions. Geoderma 2019, 337, 565–581. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Shi, T.; Chen, Y.; Jiang, Q.; Linderman, M. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma 2019, 337, 32–41. [Google Scholar] [CrossRef]
- Vaudour, E.; Gilliot, J.M.; Bel, L.; Lefevre, J.; Chehdi, K. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 24–38. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Ben-dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of the organic matter in the visible near infrared and the short wave infrared region during the controlled decomposition process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schapeman, M.; de Jong, R. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Gallo, B.C.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.D.S.; Lepsch, I.F.; Sato, M.V.; Romero, D.J.; Lacerda, M.P.C. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Román Dobarco, M.; Richer-de-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.A.; Martin, M.P.; Vaudour, E.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from Sentinel-2 for Croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef] [Green Version]
- Musick, H.B.; Pelletier, R.E. Response to soil moisture of spectral indexes derived from bidirectional reflectance in thematic mapper wavebands. Remote Sens. Environ. 1988, 25, 167–184. [Google Scholar] [CrossRef]
- Daughtry, C.; Hunt, E. Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover. Remote Sens. Environ. 2008, 112, 1647–1657. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Tao, S.; Qi, J.; Ding, M.; Guan, Q.; Wu, B.; Zhang, M.; Nabil, M.; Tian, F.; et al. A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sens. Environ. 2020, 251, 112095. [Google Scholar] [CrossRef]
- IWG Wrb. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2014. [Google Scholar]
- Shi, P.; Castaldi, F.; van Wesemael, B.; Van Oost, K. Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt. Geoderma 2020, 357, 113958. [Google Scholar] [CrossRef]
- Sherrod, L.A.; Dunn, G.; Peterson, G.; Kolberg, R. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973; pp. 48–62. [Google Scholar]
- van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Am. Soc. Photogramm. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; van Wesemael, B.; Montanarella, L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties Journal Paper no. J-18766 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B. Why Calculating RPD Is Redundant; The Newsletter of the Pedometrics Commission of the International Union of Soil Sciences: Vienna, Austria, 2013. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA; London, UK, 1993. [Google Scholar]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
- Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B. Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma 2010, 158, 32–45. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma 2012, 189–190, 176–185. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- van Wesemael, B.; Chartin, C.; Wiesmeier, M.; von Lützow, M.; Hobley, E.; Carnol, M.; Krüger, I.; Campion, M.; Roisin, C.; Hennart, S.; et al. An indicator for organic matter dynamics in temperate agricultural soils. Agric. Ecosyst. Environ. 2019, 274, 62–75. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 361–371. [Google Scholar] [CrossRef]
Spectral Band | Spectral Domain | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) | ||
---|---|---|---|---|---|---|
S-2A | S-2B | S-2A | S-2B | |||
B1 | Vis | 442.7 | 552.2 | 66 | 66 | 60 |
B2 | Vis | 492.4 | 492.1 | 36 | 36 | 10 |
B3 | Vis | 559.8 | 559.0 | 31 | 31 | 10 |
B4 | Vis | 664.6 | 664.9 | 106 | 106 | 10 |
B5 | R-edge | 704.1 | 703.8 | 15 | 16 | 20 |
B6 | R-edge | 740.5 | 739.1 | 15 | 15 | 20 |
B7 | R-edge | 782.8 | 779.7 | 20 | 20 | 20 |
B8 | NIR | 832.8 | 832.9 | 21 | 22 | 10 |
B8A | NIR | 864.7 | 864.0 | 91 | 94 | 20 |
B9 | NIR | 945.1 | 943.2 | 175 | 185 | 60 |
B10 | SWIR | 1373.5 | 1376.9 | 21 | 21 | 60 |
B11 | SWIR | 1613.7 | 1610.4 | 20 | 21 | 20 |
B12 | SWIR | 2202.4 | 2185.7 | 31 | 30 | 20 |
BinaryNDVIti | BinaryNDVIt(i+1) | BinaryNDVIti − BinaryNDVIt(i+1) |
---|---|---|
Exposed soil (0) | Exposed soil (0) | 0 |
Vegetation (1) | Exposed soil (0) | 1 |
Vegetation (1) | Vegetation (1) | 0 |
Exposed soil (0) | Vegetation (1) | −1 |
Composite | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
A | - | ||||||||
B | 1.000 | - | |||||||
C | 1.000 | 1.000 | - | ||||||
D | 0.666 | 0.666 | 0.666 | - | |||||
E | 0.332 | 0.332 | 0.332 | 0.592 | - | ||||
F | 0.390 | 0.390 | 0.390 | 0.641 | 0.979 | - | |||
G | 0.048 | 0.048 | 0.048 | 0.098 | 0.207 | 0.278 | - | ||
H | 0.114 | 0.114 | 0.114 | 0.193 | 0.338 | 0.339 | 0.881 | - | |
I | 0.890 | 0.890 | 0.890 | 0.705 | 0.495 | 0.495 | 0.117 | 0.141 | - |
Descriptive Statistics | Tenfold-Cross-Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Composite | Criteria | n | Min * | Max * | Mean * | STD * | CV (%) | RMSE * | R2 | RPD |
A | Lowest NBR2 | 128 | 6.7 | 22.1 | 12.3 | 3.4 | 27.3 | 3.63 ± 0.36 | 0.14 ± 0.03 | 1.06 ± 0.06 |
B | NDVI < 0.25 | 128 | 6.7 | 22.1 | 12.3 | 3.4 | 27.3 | 3.54 ± 0.32 | 0.22 ± 0.04 | 1.12 ± 0.07 |
C | NDVI < 0.25 and NBR2 < 0.15 | 127 | 6.7 | 22.1 | 12.3 | 3.4 | 27.3 | 3.46 ± 0.34 | 0.22 ± 0.04 | 1.12 ± 0.06 |
D | NDVI < 0.25 and NBR2 < 0.10 | 126 | 6.7 | 22.1 | 12.2 | 3.2 | 26.6 | 3.45 ± 0.30 | 0.21 ± 0.04 | 1.12 ± 0.06 |
E | NDVI < 0.25 and NBR2 < 0.07 | 123 | 6.7 | 21.4 | 12.1 | 3.1 | 25.4 | 3.43 ± 0.31 | 0.19 ± 0.04 | 1.10 ± 0.07 |
F | Greening-up | 108 | 7.4 | 20.2 | 11.7 | 3.1 | 25.4 | 2.74 ± 0.23 | 0.15 ± 0.04 | 1.06 ± 0.08 |
G | Greening-up and NBR2 < 0.15 | 91 | 7.4 | 20.2 | 11.6 | 2.7 | 22.9 | 2.43 ± 0.24 | 0.14 ± 0.05 | 1.06 ± 0.08 |
H | Greening-up and NBR2 < 0.10 | 68 | 7.4 | 20.2 | 11.6 | 2.7 | 22.8 | 2.21 ± 0.27 | 0.26 ± 0.08 | 1.14 ± 0.08 |
I | Greening-up and NBR2 < 0.07 | 49 | 8.0 | 20.2 | 11.3 | 3.2 | 25.7 | 2.09 ± 0.39 | 0.54 ± 0.12 | 1.68 ± 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sens. 2021, 13, 1791. https://doi.org/10.3390/rs13091791
Dvorakova K, Heiden U, van Wesemael B. Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sensing. 2021; 13(9):1791. https://doi.org/10.3390/rs13091791
Chicago/Turabian StyleDvorakova, Klara, Uta Heiden, and Bas van Wesemael. 2021. "Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction" Remote Sensing 13, no. 9: 1791. https://doi.org/10.3390/rs13091791
APA StyleDvorakova, K., Heiden, U., & van Wesemael, B. (2021). Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sensing, 13(9), 1791. https://doi.org/10.3390/rs13091791