Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Non-Imaging Sensor Data Acquisition and Processing
2.3. Imaging Sensor Data Acquisition and Processing
2.4. Multivariate Statistical Analysis and Mapping
3. Results and Discussions
3.1. Descriptive Analysis of Soil Attributes
3.2. Spectral Description of Soils
3.3. Prediction Models Generated for Particle-Size Fraction and SOM from Spectral Data Obtained by ASD FieldSpec 3 Jr and AisaFENIX Sensors
3.4. Attributes Mapping Using PLSR Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cezar, E.; Nanni, M.R.; Demattê, J.A.M.; Chicati, M.L.; de Oliveira, R.B. Estimativa de atributos do solo por meio de espectrorradiometria difusa. Rev. Bras. Ciênc. Solo 2013, 37, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Mendonça-Santos, M.L.; dos Santos, H.G. The state of the art of Brazilian soil mapping and prospects for digital soil mapping. Dev. Soil Sci. 2006, 31, 39–54. [Google Scholar] [CrossRef]
- Santos, H.G.; Hochmüller, D.P.; Cavalcanti, A.C.; Rêgo, R.S.; Ker, J.C.; Panoso, L.A.; Amaral, J.A.M. Procedimentos Normativos de Levantamentos Pedológicos; Embrapa-SPI: Brasília, Brazil; Embrapa-CNPS: Rio de Janeiro, Brazil, 1995. [Google Scholar]
- Busato, J.G.; Leão, T.P.; Baldotto, M.A.; Canellas, L.P. Organic matter quality and dynamics in tropical soils amended with sugar industry residue. Rev. Bras. Ciênc. Solo 2012, 36, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016. [Google Scholar]
- Demattê, J.A.M.; Ramirez-Lopez, L.; Rizzo, R.; Nanni, M.R.; Fiorio, P.R.; Fongaro, C.T.; Neto, L.G.M.; Safanelli, J.L.; Barros, P.P.D.S. Remote sensing from ground to space platforms associated with terrain attributes as a hybrid strategy on the development of a pedological map. Remote Sens. 2016, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Sousa Junior, J.G.; Demattê, J.A.M.; Araújo, S.R. Modelos espectrais terrestres e orbitais na determinação de teores de atributos dos solos: Potencial e custos. Bragantia 2011, 70, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, S.; Ma, W.; Ji, W.; Xu, D.; Shi, Z.; Zhang, G. Rapid determination of soil classes in soil profiles using vis–NIR spectroscopy and multiple objectives mixed support vector classification. Eur. J. Soil Sci. 2019, 70, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Viscarra Rossel, R.A.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Lee, K.S.; Sudduth, K.A.; Drummond, T.S.; Lee, D.H.; Kitchen, N.R.; Chung, S.O. Calibration methods for soil property estimation using reflectance spectroscopy. ASABE 2010, 53, 675–684. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Alves, M.R.; Gallo, B.C.; Fongaro, C.T. Detecção de limites de solos por dados espectrais e de relevo. Rev. Bras. Ciênc. Solo 2014, 38, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Cezar, E.; Nanni, M.R.; Guerrero, C.; da Silva Junior, C.A.; Cruciol, L.G.T.; Chicati, M.L.; Silva, G.F.C. Organic matter and sand estimates by spectroradiometry: Strategies for the development of models with applicability at a local scale. Geoderma 2019, 340, 224–233. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhang, X.L.; Zheng, S.F.; Tang, N. Black soil organic matter predicting model based on field hyperspectral reflectance. Spectr. Spec. Anal. 2010, 30, 3355–3358. [Google Scholar] [CrossRef]
- Shi, Z.; Ji, W.; Viscarra Rossel, R.A.; Chen, S.; Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library. Eur. J. Soil Sci. 2015, 66, 679–687. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Garcia, G.J. Alteration of Soil Properties through a Weathering Sequence as Evaluated by Spectral Reflectance. Soil Sci. Soc. Amer. J. 1999, 63, 327. [Google Scholar] [CrossRef]
- Vasques, G.M.; Demattê, J.A.M.; Rossel, R.; Ramírez-López, L.; Terra, F.S. Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths. Geoderma. 2014, 223, 73–78. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Zaady, E.; Salbach, C.; Schmidt, A.; Lausch, A.; Zacharias, S.; Notesco, G.; Ben-Dor, E.; Karnieli, A. Mapping the spectral soil quality index (SSQI) using airborne imaging spectroscopy. Remote Sens. 2015, 7, 15748–15781. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai–Tibet plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Lobsey, C.R.; Sharman, C.; Flick, P.; McLachlan, G. Novel proximal sensing for monitoring soil organic C stocks and condition. Environ. Sci. Technol. 2017, 51, 5630–5641. [Google Scholar] [CrossRef] [Green Version]
- Richter, K.; Palladino, M.; Vuolo, F.; Dini, L.; D’Urso, G. Spatial distribution of soil water content from airborne thermal and optical remote sensing data. Remote Sens. Agric. Ecosyst. Hydrol. XI 2009, 7472, 74720W-11. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Muñoz, J.C.; Corbari, C. A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP campaigns. Remote Sens. Environ. 2012, 117, 415–428. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Taylor, R.G.; Hill, J.; Dematte, J.A.M.; Whiting, M.L.; Chabrillat, S.; Sommer, S. Imaging spectrometry for soil applications. Adv. Agron. 2008, 97, 321–392. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectroscopy for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Rodrigues, M.; Nanni, M.R.; Cezar, E.C.; Santos, G.L.A.A.; Reis, A.S.; Oliveira, K.M. Evaluation of the use of spectroradiometry for the determination of soil exchangeable ions after the application of mining coproducts. Appl. Spec. Rev. 2020, 25, 491–508. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Demattê, J.A.; Marques, K.P.; Poppiel, R.R.; Rizzo, R.; Mendes, W.S.; Nelida EQ Silvero, N.E.Q.; Safanelli, J.L. Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology 2020, 367. [Google Scholar] [CrossRef]
- IPT—Instituto de Pesquisas Tecnológicas. Mapa Geológico do Estado de São Paulo. Escala 1:1.000.000; Divisão de Minas e Geologia Aplicada do Instituto de Pesquisas Tecnológicas do estado de São Paulo: São Paulo, Brazil, 1981. [Google Scholar]
- Marques, K.P.; Demattê, J.A.; Miller, B.A.; Lepsch, I.F. Geomorphometric segmentation of complex slope elements for detailed digital soil mapping in southeast Brazil. Geoderma Reg. 2018, 14. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M. Pedological Map of the State of São Paulo: Revised and Expanded, 1st ed.; Instituto Florestal: São Paulo, Brazil, 2017. [Google Scholar]
- Souza Filho, E.E. Mapeamento Faciológico do Subgrupo Itararé na Quadrícula de Campinas (SP). Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 1986. [Google Scholar]
- Vidal-Torrado, P. Pedogênese e Morfogênese no Distrito de Tupi (Piracicaba, SP). Ph.D. Thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, São Paulo, Brasil, 1994. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Torrado, P.; Lepsch, I.F. Relações material de origem/solo e pedogênese em uma seqüência de solos predominantemente argilosos e latossólicos sobre psamitos na Depressão Periférica Paulista. Rev. Bras. Ciên. Solo 1999, 23, 357–369. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos, 3rd ed.; Revisada e Ampliada; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Epiphânio, J.C.N.; Formaggio, A.R.; Valeriano, M.D.M.; Oliveira, J.D. Comportamento Espectral de Solos do Estado de São Paulo, 1st ed.; INPE: São José dos Campos, Brazil, 1992. [Google Scholar]
- LRCL—Labsphere Reflectance Calibration Laboratory. Spectral Reflectance Target Calibrated From 0.25–2.5 nm Reported in 0.050 nm Intervals, 1st ed.; Sutton: London, UK, 2009. [Google Scholar]
- Nanni, M.R.; Demattê, J.A.M. Comportamento da linha do solo obtida por espectrorradiometria laboratorial para diferentes classes de solo. Rev. Bras. Ciênc. Solo 2006, 30, 1031–1038. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245–246, 112–124. [Google Scholar] [CrossRef]
- Fongaro, C.T.; Demattê, J.A.M.; Rizzo, R.; Lucas Safanelli, J.; Mendes, W.D.S.; Dotto, A.C.; Vicente, L.E.; Franceschini, M.H.D.; Ustin, S.L. Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images. Remote Sens. 1555, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Spectral Imaging. AisaFENIX Hyperspectral Sensor. User’s Manual. 2017. Available online: https://specim.fi/products/aisafenix/ (accessed on 3 June 2020).
- Richter, R. Atmospheric/Topographic Correction for Airborne Imagery; DLR Report, DLR-IB 562-02/05; DLR: Wesseling, Germany, 2005; p. 107. [Google Scholar]
- Environment For Visualizing Images (Envi Classic) User’s Guide; ITT Visual Information Solutions: Boulder, CO, USA, 2005.
- Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol. Indic. 2011, 11, 123–131. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Steffens, M. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rinnan, A.; Berg, F.V.; Engelsen, S.B. Review of the most common preprocessing techniques for nearinfrared spectral. Trac Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Nanni, M.R.; Cezar, E.; Silva Junior, C.A.D.; Silva, G.F.C.; Gualberto, A.A.S. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies. Arch. Agron. Soil Sci. 2017, 64, 682–695. [Google Scholar] [CrossRef]
- Barmeier, G.; Hofer, K.; Schmidhalter, U. Mid-season prediction of grain yield and protein content of spring barley cultivars using high-throughput spectral sensing. Eur. J. Agron. 2017, 90, 108–116. [Google Scholar] [CrossRef]
- Almeida, M.R.N. Espectroscopia de Infravermelho Próximo com Transformada de Fourier (FT-NIR) na Caracterização de Farinhas para Alimentação Pueril. Master’s Thesis, University of Lisbon, Lisbon, Portugal, 2009. [Google Scholar]
- Souza, D.M.; Madari, B.E.; Guimarães, F.F. Application of multivariate calibration and artificial intelligence in the analysis of infrared spectra to quantify organic matter in soil samples. Quím. Nova. 2012, 35, 1738–1745. [Google Scholar] [CrossRef] [Green Version]
- Harr, M.E. Reliability-Based Design in Civil Engineering; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Demattê, J.A.M.; Araújo, S.R.; Fiorio, P.R.; Fongaro, C.T.; Nanni, M.R. Espectroscopia VIS-NIR-SWIR na avaliação de solos ao longo de uma topossequência em Piracicaba (SP). Rev. Ciênc. Agron. 2015, 46, 679–688. [Google Scholar] [CrossRef]
- Palm, C.; Sanches, P.; Ahamed, S.; Awiti, A. Soils: A Contemporary Perspective. Annu. Rev. Environ. Resour. 2007, 32, 99–129. [Google Scholar] [CrossRef] [Green Version]
- Dalmolin, R.S.D.; Gonçalves, C.N.; Klant, E.; Dick, D.P. Relação entre os constituintes do solo e seu comportamento espectral. Ciênc. Rur. 2005, 35, 481–489. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Bellinaso, H.; Romero, D.J.; Fongaro, C.T. Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification. Sci. Agric. 2014, 71, 509–520. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fiorio, P.R.; Araújo, S.R. Variation of routine soil analysis when compared with hyperspectral narrow band sensing method. Remote Sens. 2010, 2, 1997–2016. [Google Scholar] [CrossRef] [Green Version]
- Nanni, M.R.; Demattê, J.A.M. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci. Soc. Am. J. 2006, 70, 393–407. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A. Why you don’t need to use RPD. Pedometron 2013, 33, 14–15. [Google Scholar]
- Vitorino, A.C.T.; Ferreira, M.M.; Curi, N.; Lima, J.M.; Silva, M.L.N.; Motta, P.E.F. Mineralogia, química e estabilidade de agregados do tamanho de silte de solos da Região Sudeste do Brasil. Pesq. Agropecu. Bras. 2003, 38, 133–141. [Google Scholar] [CrossRef]
- Cezar, E.; Nanni, M.R.; Chicati, M.L.; Souza Junior, I.G.; Costa, A.C.S. Avaliação e quantificação das frações silte, argila e areia por meio de suas respectivas reflectâncias. Rev. Bras. Ciênc. Solo 2012, 36, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Mark, H.; Workman, J. Bias and Slope Correction. Spectroscopy 2017, 32, 24–30. [Google Scholar]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.; Fernandes Filho, E.I. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Sayes, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Bios. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- Martins, J.A.; Fiorio, P.R.; Demattê, J.A.; de Miranda, J.H.; Lelis Neto, J.A. Sensoriamento remoto na determinação de atributos de um Nitossolo sob aplicação de vinhaça. Rev. Bras. Ciênc. Solo 2014, 38, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Hair Jr, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Análise Multivariada de Dados [Recurso Eletrônico], 6th ed.; tradução Adonai Schlup Sant’Anna, Dados eletrônicos; Bookman: Porto Alegre, Brazil, 2009. [Google Scholar]
- Gomez, C.; Oltra-Carrió, R.; Bacha, S.; Lagacherie, P.; Briottet, X. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery. Remote Sens. Environ. 2015, 164, 1–15. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Schwanghart, W.; Jarmer, T. Linking spatial patterns of soil organic carbon to topography: A case study from south-eastern Spain. Geomorphology 2011, 126, 252–263. [Google Scholar] [CrossRef]
- Boschi, R.S.; Bocca, F.F.; Lopes-Assad, M.L.R.C.; Assad, E.D. How accurate are pedotransfer functions for bulk density for Brazilian soils. Sci. Agric. 2018, 75, 70–78. [Google Scholar] [CrossRef]
- El Bouhaddani, S.; Uh, H.W.; Hayward, C.; Jongbloed, G.; Houwing-Duistermaat, J. Probabilistic partial least squares model: Identifiability, estimation and application. J. Multiv. Anal. 2018, 167, 331–346. [Google Scholar] [CrossRef]
- Hbirkou, C.; Pätzold, S.; Mahlein, A.K.; Welp, G. Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma 2012, 175–176, 21–28. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Demattê, J.A.M.; da Silva Terra, F.; Vicente, L.E.; Bartholomeus, H.; de Souza Filho, C.R. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 358–370. [Google Scholar] [CrossRef]
- Fontes, M.P.F.; Carvalho, A. Color attributes and mineralogical characteristics, evaluated by radiometry, of highly weathered tropical soils. Soil Sci. Soc. Am. J. 2005, 69, 1162–1172. [Google Scholar] [CrossRef]
- Mortimore, J.L.; Marshall, L.J.R.; Almond, M.J.; Hollins, P.; Matthews, W. Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectr. Acta Part A 2004, 60, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.M.; Waite, T.D. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Min. 1985, 70, 1262–1269. [Google Scholar]
- Gomez, C.; Lagacherie, P. Mapping of Primary Soil Properties Using Optical Visible and Near Infrared (Vis-NIR) Remote Sensing. In Land Surface Remote Sensing in Agriculture and Forest; Baghdadi, N., Zribi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–35. [Google Scholar] [CrossRef]
- Madeira Netto, J.S. Spectral reflectance properties of soil. Photo Interp. 1996, 34, 59–70. [Google Scholar]
- Vicente, L.E.; Souza Filho, C.R. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens. Environ. 2011, 115, 1824–1836. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Terra, F.D.S.; Quartaroli, C.F. Spectral behavior of some modal soil profiles from São Paulo State, Brazil. Bragantia 2012, 71, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Hicks, W.S. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Yang, H.; Li, J. Predictions of soil organic carbon using laboratory-based hyperspectral data in the northern Tianshan mountains, China. Environ. Monit. Assess. 2013, 185, 3897–3908. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.R.; Inda, A.V.; Tiecher, T.; Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Ciênc. E Agrotec. 2016, 40, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I.J. Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery. ISPRS J. Photog. Remote Sens. 2016, 117, 1–10. [Google Scholar] [CrossRef]
- Lepsch, I.F. Influência do cultivo de Eucalyptus e Pinus em propriedades de solo sob cerrado. Rev. Bras. Ciênc. Solo 1980, 4, 103–107. [Google Scholar]
Samples | Sand | Silt | Clay | SOM 1 | Samples | Sand | Silt | Clay | SOM 1 |
---|---|---|---|---|---|---|---|---|---|
g kg−1 | g dm−3 | g kg−1 | g kg−3 | ||||||
A1 | 830.00 | 40.00 | 130.00 | 4.52 | A34 | 780.00 | 30.00 | 190.00 | 7.11 |
A2 | 740.00 | 30.00 | 230.00 | 5.20 | A35 | 730.00 | 40.00 | 230.00 | 4.06 |
A3 | 770.00 | 40.00 | 190.00 | 6.20 | A36 | 590.00 | 80.00 | 330.00 | 15.26 |
A4 | 810.00 | 40.00 | 150.00 | 5.91 | A37 | 470.00 | 40.00 | 490.00 | 10.07 |
A5 | 800.00 | 20.00 | 180.00 | 8.50 | A38 | 410.00 | 30.00 | 560.00 | 9.50 |
A6 | 720.00 | 40.00 | 220.00 | 12.00 | A39 | 450.00 | 100.00 | 450.00 | 13.13 |
A7 | 650.00 | 40.00 | 310.00 | 7.02 | A40 | 430.00 | 40.00 | 530.00 | 14.15 |
A8 | 460.00 | 60.00 | 480.00 | 14.80 | A41 | 410.00 | 40.00 | 550.00 | 12.85 |
A9 | 490.00 | 100.00 | 410.00 | 12.76 | A42 | 390.00 | 80.00 | 530.00 | 9.52 |
A10 | 540.00 | 40.00 | 420.00 | 9.06 | A43 | 550.00 | 40.00 | 410.00 | 6.28 |
A11 | 630.00 | 20.00 | 350.00 | 4.15 | A44 | 570.00 | 40.00 | 390.00 | 5.07 |
A12 | 790.00 | 40.00 | 170.00 | 5.35 | A45 | 500.00 | 20.00 | 480.00 | 4.06 |
A13 | 730.00 | 100.00 | 170.00 | 6.74 | A46 | 360.00 | 30.00 | 610.00 | 8.50 |
A14 | 860.00 | 30.00 | 110.00 | 2.94 | A47 | 400.00 | 60.00 | 550.00 | 10.81 |
A15 | 740.00 | 70.00 | 190.00 | 8.13 | A48 | 380.00 | 40.00 | 580.00 | 11.09 |
A16 | 800.00 | 30.00 | 170.00 | 5.07 | A49 | 490.00 | 50.00 | 460.00 | 12.20 |
A17 | 650.00 | 30.00 | 320.00 | 6.46 | A50 | 510.00 | 80.00 | 410.00 | 11.00 |
A18 | 730.00 | 40.00 | 230.00 | 6.46 | A51 | 460.00 | 30.00 | 510.00 | 14.80 |
A19 | 460.00 | 50.00 | 490.00 | 13.41 | A52 | 750.00 | 20.00 | 230.00 | 2.57 |
A20 | 420.00 | 40.00 | 540.00 | 12.48 | A53 | 430.00 | 60.00 | 510.00 | 6.00 |
A21 | 470.00 | 40.00 | 490.00 | 12.39 | A54 | 430.00 | 180.00 | 390.00 | 11.37 |
A22 | 530.00 | 20.00 | 450.00 | 9.40 | A55 | 530.00 | 80.00 | 390.00 | 8.22 |
A23 | 490.00 | 40.00 | 470.00 | 8.31 | A56 | 550.00 | 40.00 | 410.00 | 3.50 |
A24 | 700.00 | 20.00 | 280.00 | 4.50 | A57 | 800.00 | 20.00 | 180.00 | 9.52 |
A25 | 630.00 | 40.00 | 330.00 | 4.89 | A58 | 770.00 | 30.00 | 200.00 | 3.22 |
A26 | 500.00 | 20.00 | 480.00 | 9.80 | A59 | 730.00 | 50.00 | 220.00 | 7.02 |
A27 | 450.00 | 80.00 | 470.00 | 13.96 | A60 | 620.00 | 50.00 | 330.00 | 7.76 |
A28 | 470.00 | 40.00 | 490.00 | 13.13 | A61 | 640.00 | 90.00 | 270.00 | 4.06 |
A29 | 450.00 | 80.00 | 470.00 | 12.11 | A62 | 730.00 | 50.00 | 220.00 | 6.28 |
A30 | 450.00 | 60.00 | 490.00 | 15.07 | A63 | 610.00 | 120.00 | 270.00 | 6.37 |
A31 | 550.00 | 40.00 | 410.00 | 10.17 | A64 | 630.00 | 120.00 | 250.00 | 5.63 |
A32 | 590.00 | 60.00 | 350.00 | 10.07 | A65 | 760.00 | 40.00 | 200.00 | 4.61 |
A33 | 680.00 | 30.00 | 290.00 | 9.24 | A66 | 490.00 | 40.00 | 470.00 | 7.39 |
Attributes | Minimum | Mean | Median | Maximum | SD 1 | CV 2(%) |
---|---|---|---|---|---|---|
Sand (g kg−1) | 360.00 | 589.85 | 560.00 | 860.00 | 14.12 | 23.94 |
Silt (g kg−1) | 20.00 | 50.45 | 40.00 | 180.00 | 2.93 | 58.01 |
Clay (g kg−1) | 110.00 | 359.55 | 390.00 | 610.00 | 13.72 | 58.01 |
SOM (g dm−3) | 2.57 | 8.53 | 8.26 | 15.26 | 0.35 | 41.28 |
Attributes | Sand | Silt | Clay | SOM |
---|---|---|---|---|
Sand | 1.00 * | −0.26 | −0.98 * | −0.65 * |
Silt | −0.26 | 1.00 * | 0.04 | 0.27 * |
Clay | −0.98 * | 0.04 | 1.00 * | 0.62 * |
SOM | −0.65 * | 0.27 * | 0.62 * | 1.00 * |
Sensor | Attributes | PLS Factors | PLSR | r | R2 | RMSE | SE | Bias |
---|---|---|---|---|---|---|---|---|
Non-imaging | Clay (g kg−1) | 10 | Cross-Validation | 0.902 | 0.817 | 61.131cv | 61.304cv | 0.817 |
Prediction | 0.921 | 0.720 | 66.332p | 67.532p | 1.038 | |||
Imaging | 5 | Cross-Validation | 0.839 | 0.703 | 81.001cv | 82.183cv | 0.564 | |
Prediction | 0.799 | 0.621 | 81.613p | 82.195p | 1.562 | |||
Non-imaging | Silt (g kg−1) | 5 | Cross-Validation | 0.444 | 0.211 | 15.533cv | 15.722cv | 0.013 |
Prediction | 0.491 | 0.175 | 27.082p | 27.701p | −0.291 | |||
Imaging | 1 | Cross-Validation | −0.463 | 0.05 | 24.991cv | 25.261cv | 0.040 | |
Prediction | −0.187 | 0.06 | 39.722p | 40.303p | −0.586 | |||
Non-imaging | Sand (g kg−1) | 4 | Cross-Validation | 0.844 | 0.726 | 77.233cv | 78.164 cv | 0.056 |
Prediction | 0.842 | 0.544 | 76.041p | 75.612p | 2.004 | |||
Imaging | 4 | Cross-Validation | 0.837 | 0.690 | 71.482cv | 72.484cv | −0.664 | |
Prediction | 0.818 | 0.663 | 81.851p | 83.882p | −0.575 | |||
Non-imaging | SOM (g dm−3) | 8 | Cross-Validation | 0.893 | 0.805 | 1.613cv | 1.627cv | 0.126 |
Prediction | 0.845 | 0.700 | 1.743p | 1.795p | 0.068 | |||
Imaging | 3 | Cross-Validation | 0.802 | 0.672 | 1.778cv | 1.796cv | 0.255 | |
Prediction | 0.845 | 0.672 | 2.158p | 2.209p | −0.221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanni, M.R.; Demattê, J.A.M.; Rodrigues, M.; Santos, G.L.A.A.d.; Reis, A.S.; Oliveira, K.M.d.; Cezar, E.; Furlanetto, R.H.; Crusiol, L.G.T.; Sun, L. Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sens. 2021, 13, 1782. https://doi.org/10.3390/rs13091782
Nanni MR, Demattê JAM, Rodrigues M, Santos GLAAd, Reis AS, Oliveira KMd, Cezar E, Furlanetto RH, Crusiol LGT, Sun L. Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sensing. 2021; 13(9):1782. https://doi.org/10.3390/rs13091782
Chicago/Turabian StyleNanni, Marcos Rafael, José Alexandre Melo Demattê, Marlon Rodrigues, Glaucio Leboso Alemparte Abrantes dos Santos, Amanda Silveira Reis, Karym Mayara de Oliveira, Everson Cezar, Renato Herrig Furlanetto, Luís Guilherme Teixeira Crusiol, and Liang Sun. 2021. "Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors" Remote Sensing 13, no. 9: 1782. https://doi.org/10.3390/rs13091782
APA StyleNanni, M. R., Demattê, J. A. M., Rodrigues, M., Santos, G. L. A. A. d., Reis, A. S., Oliveira, K. M. d., Cezar, E., Furlanetto, R. H., Crusiol, L. G. T., & Sun, L. (2021). Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sensing, 13(9), 1782. https://doi.org/10.3390/rs13091782