Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco
Abstract
:1. Introduction
- Conducting olive orchard mapping using DG imagery and different sampling approaches, i.e., grid sampling and region sampling to explore the model generalizability under different levels of spatial variability;
- Conducting olive orchard mapping using DG satellite imagery and multi-temporal Planet imagery to explore the effectiveness of HR imagery compared to VHR imagery.
2. Material and Methods
2.1. Study Area
2.1.1. Overview of the Olive Cultivation in Morocco
2.1.2. Experiment Sites
2.2. Satellite Data
2.2.1. DigitalGlobe Imagery
2.2.2. Planet Imagery
2.3. Methodology Overview
2.4. Data Preparation and Pre-Processing
2.4.1. The Logic Behind Patch-Based Classification
2.4.2. Ground Truthing and Labelling
2.4.3. Sampling Approach: Different Ways of Allocating Training, Validation, and Testing Dataset
2.5. Olive Orchard Mapping with Deep Learning
2.5.1. Difference between Olive Orchards in DG and Planet Imagery
2.5.2. CNN Model
2.5.3. LRCN Model
2.6. Accuracy Assessment
3. Results
3.1. Mapping Olive Orchards Using 0.5 m DG Imagery
3.1.1. Results Using DG Imagery and Grid Sampling
3.1.2. Results Using DG Imagery and Region Sampling
3.2. Mapping Olive Orchards Using 3-m Planet Imagery
3.2.1. Results Using Single Time Planet Imagery and CNN
3.2.2. Results Using Multi-Temporal Planet Imagery and LRCN
4. Discussion
4.1. Difference between Olive Orchard Mapping in Semi-Arid and Sub-Humid Regions
4.2. Model Generalizability under Different Levels of Spatial Variability
4.3. The Effectiveness of Planet Imagery Compared to DG Imagery
4.4. Feature Representation for Olive Orchards
4.5. When Is Planet-Alike HR Imagery Effective?
4.6. Extension to Larger Scales: When to Consider Spatial Variability in Sampling?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asubonteng, K.; Pfeffer, K.; Ros-Tonen, M.; Verbesselt, J.; Baud, I. Effects of Tree-crop Farming on Land-cover Transitions in a Mosaic Landscape in the Eastern Region of Ghana. Environ. Manag. 2018, 62, 529–547. [Google Scholar] [CrossRef] [PubMed]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Luedeling, E.; Smethurst, P.J.; Baudron, F.; Bayala, J.; Huth, N.I.; van Noordwijk, M.; Ong, C.K.; Mulia, R.; Lusiana, B.; Muthuri, C.; et al. Field-scale modeling of tree-crop interactions: Challenges and development needs. Agric. Syst. 2016, 142, 51–69. [Google Scholar] [CrossRef]
- Palma, J.; Graves, A.R.; Burgess, P.J.; van der Werf, W.; Herzog, F. Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe. Ecol. Econ. 2007, 63, 759–767. [Google Scholar] [CrossRef]
- Barrett, C.B. The Economics of Agricultural Development: An Overview. Orig. Essay 2011, 1, 1–63. [Google Scholar]
- Timmer, C.P. Agriculture and economic development. In Handbook of Agricultural Economics 2; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1487–1546. [Google Scholar]
- Dixon, J.; Garrity, D. Perennial Crops and Trees: Targeting the Opporunties within a Farming System Context Introduction: The Search for Sustainability. Available online: https://landinstitute.org/wp-content/uploads/2014/11/PF_FAO14_ch23.pdf (accessed on 30 April 2021).
- Molnar, T.; Kahn, P.; Ford, T.; Funk, C.; Funk, C. Tree Crops, a Permanent Agriculture: Concepts from the Past for a Sustainable Future. Resources 2013, 2, 457–488. [Google Scholar] [CrossRef]
- Smith, J.R. Tree Crops: A Permanent Agriculture; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- The Permaculture Research Institute Seed Banking and Its Benefits. Available online: https://permaculturenews.org/2017/02/28/seed-banking-benefits/ (accessed on 22 April 2020).
- FAO Forestry and Food Security. Available online: http://www.fao.org/3/T0178E/T0178E00.htm#Contents (accessed on 21 April 2020).
- Bates, R. Open-Economy Politics: The Political Economy of the World Coffee Trade; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Rebuilding West Africa’s Food Potential: Policies and Market Incentives for Smallholder-Inclusive Food Value Chains. Available online: http://www.fao.org/3/i3222e/i3222e.pdf (accessed on 29 April 2021).
- Basiron, Y. Palm oil production through sustainable plantations. Eur. J. Lipid Sci. Technol. 2007, 109, 289–295. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Gastaldi, M.; Morone, P. A Social Analysis of the Olive Oil Sector: The Role of Family Business. Resources 2019, 8, 151. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef]
- Jia, X.; Khandelwal, A.; Carlson, K.M.; Gerber, J.S.; West, P.C.; Samberg, L.H.; Kumar, V. Automated Plantation Mapping in Southeast Asia Using MODIS Data and Imperfect Visual Annotations. Remote Sens. 2020, 12, 636. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [Google Scholar] [CrossRef]
- Li, W.; Dong, R.; Fu, H.; Yu, L. Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images Using Two-Stage Convolutional Neural Networks. Remote Sens. 2018, 11, 11. [Google Scholar] [CrossRef]
- Mubin, N.A.; Nadarajoo, E.; Shafri, H.Z.M.; Hamedianfar, A. Young and mature oil palm tree detection and counting using convolutional neural network deep learning method. Int. J. Remote Sens. 2019, 40, 7500–7515. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Li, W.; Ciais, P.; Cheng, Y.; Gong, P. Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth Syst. Sci. Data 2020, 12, 847–867. [Google Scholar] [CrossRef]
- Jia, X.; Khandelwal, A.; Gerber, J.; Carlson, K.; West, P.; Kumar, V. Learning large-scale plantation mapping from imperfect annotators. In Proceedings of the 2016 IEEE International Conference on Big Data, (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 1192–1201. [Google Scholar]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Integrating Mahalanobis typicalities with a neural network for rubber distribution mapping. Remote Sens. Lett. 2011, 2, 157–166. [Google Scholar] [CrossRef]
- Cordero-Sancho, S.; Sader, S.A. Spectral analysis and classification accuracy of coffee crops using Landsat and a topographic-environmental model. Int. J. Remote Sens. 2007, 28, 1577–1593. [Google Scholar] [CrossRef]
- Gomez, C.; Mangeas, M.; Petit, M.; Corbane, C.; Hamon, P.; Hamon, S.; De Kochko, A.; Le Pierres, D.; Poncet, V.; Despinoy, M. Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones. Remote Sens. Environ. 2010, 114, 2731–2744. [Google Scholar] [CrossRef]
- Kelley, L.C.; Pitcher, L.; Bacon, C. Using Google Earth Engine to Map Complex Shade-Grown Coffee Landscapes in Northern Nicaragua. Remote Sens. 2018, 10, 952. [Google Scholar] [CrossRef]
- Ortega-Huerta, M.A.; Komar, O.; Price, K.P.; Ventura, H.J. Mapping coffee plantations with Landsat imagery: An example from El Salvador. Int. J. Remote Sens. 2012, 33, 220–242. [Google Scholar] [CrossRef]
- Gallardo-Salazar, J.L.; Pompa-García, M. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sens. 2020, 12, 4144. [Google Scholar] [CrossRef]
- Cheng, Z.; Qi, L.; Cheng, Y.; Wu, Y.; Zhang, H. Interlacing Orchard Canopy Separation and Assessment using UAV Images. Remote Sens. 2020, 12, 767. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution UAV-Acquired Images of an Orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, C.; Tang, Y.; Zhuang, J.; Lin, J.; He, Y.; Guo, Q.; Zhong, Z.; Lei, H.; Luo, S. Citrus Tree Segmentation from UAV Images Based on Monocular Machine Vision in a Natural Orchard Environment. Sensors 2019, 19, 5558. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2323. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105. [Google Scholar]
- Díaz-Varela, R.; de la Rosa, R.; León, L.; Zarco-Tejada, P. High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sens. 2015, 7, 4213–4232. [Google Scholar] [CrossRef]
- Kefi, M.; Pham, T.D.; Kashiwagi, K.; Yoshino, K. Identification of irrigated olive growing farms using remote sensing techniques. Euro-Mediterr. J. Environ. Integr. 2016, 1. [Google Scholar] [CrossRef]
- Khan, A.; Khan, U.; Waleed, M.; Khan, A.; Kamal, T.; Marwat, S.N.K.; Maqsood, M.; Aadil, F. Remote Sensing: An Automated Methodology for Olive Tree Detection and Counting in Satellite Images. IEEE Access 2018, 6, 77816–77828. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- The International Olive Council Official Jounral of the International Olive Council. Available online: www.internationaloliveoil.org (accessed on 10 June 2020).
- Maurer, G. Agriculture in the Rif and Tell Mountains of North Africa. Mt. Res. Dev. 1992, 12, 337–347. [Google Scholar] [CrossRef]
- Boujrouf, S. La montagne dans la politique d’aménagement du territoire du Maroc/The place of mountain areas in Morocco’s national planning and development policies. Rev. Géographie Alp. 1996, 84, 37–50. [Google Scholar] [CrossRef]
- Borkum, E.; Sivasankaran, A.; Fortson, J.; Velyvis, K.; Ksoll, C.; Moroz, E.; Sloan, M. Evaluation of the Fruit Tree Productivity Project in Morocco: Design Report; Mathematica Policy Research: Washington, DC, USA, 2016. [Google Scholar]
- USDA Production, Supply and Distribution Online. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/home (accessed on 10 April 2020).
- DigitalGlobe Leader in Satellite Imagery. Available online: https://www.digitalglobe.com/company/about-us (accessed on 11 May 2020).
- DigitalGlobe DigitalGlobe Map-Ready Imagery. Available online: https://www.maxar.com/products/analysis-ready-data (accessed on 10 May 2020).
- Poursanidis, D.; Traganos, D.; Chrysoulakis, N.; Reinartz, P. Cubesats Allow High Spatiotemporal Estimates of Satellite-Derived Bathymetry. Remote Sens. 2019, 11, 1299. [Google Scholar] [CrossRef]
- Planet Planet Education and Research Program. Available online: https://www.planet.com/markets/education-and-research/ (accessed on 10 May 2020).
- Planet—Satellite Missions—eoPortal Directory. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/p/planet (accessed on 14 April 2021).
- Planet Imagery: Product Specification. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 29 April 2021).
- Peng, B.; Meng, Z.; Huang, Q.; Wang, C. Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery. Remote Sens. 2019, 11, 2492. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, P.; Zhao, L. Remote sensing image scene classification using CNN-CapsNet. Remote Sens. 2019, 11, 494. [Google Scholar] [CrossRef]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Shangguan, B.; Wang, M.; Wu, Z. A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102086. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Rubwurm, M.; Korner, M. Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; Volume 2017, pp. 1496–1504. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. A scale robust convolutional neural network for automatic building extraction from aerial and satellite imagery. Int. J. Remote Sens. 2019, 40, 3308–3322. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA, 2017; Volume 2017, pp. 3226–3229. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; International Conference on Learning Representations; ICLR: San Diego, CA, USA, 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition; IEEE: New York, NY, USA, 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; Volume 2016, pp. 770–778. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; pp. 2261–2269. [Google Scholar]
- Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhou, F.; Hang, R.; Yuan, X. Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification. Remote Sens. 2017, 9, 1330. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Zhang, X.; Wu, D.; Du, X. Long Time Series Land Cover Classification in China from 1982 to 2015 Based on Bi-LSTM Deep Learning. Remote Sens. 2019, 11, 1639. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning A Probabilistic Perspective; MIT Press: Cambridge, CA, USA, 2012; ISBN 9780262018029. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; International Conference on Learning Representations; ICLR: San Diego, CA, USA, 2015. [Google Scholar]
- Ceri, S.; Bozzon, A.; Brambilla, M.; Della Valle, E.; Fraternali, P.; Quarteroni, S.; Ceri, S.; Bozzon, A.; Brambilla, M.; Della Valle, E.; et al. An Introduction to Information Retrieval. In Web Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–11. [Google Scholar] [CrossRef]
- Raghavan, V.; Bollmann, P.; Jung, G.S. A Critical Investigation of Recall and Precision as Measures of Retrieval System Performance. ACM Trans. Inf. Syst. 1989, 7, 205–229. [Google Scholar] [CrossRef]
- Manning, C.; Schutze, H. Foundations of Statistical Natural Language Processing; MIT Press: Cambridge, CA, USA, 1999. [Google Scholar]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H.; Tao, X. Deep learning based winter wheat mapping using statistical data as ground references in Kansas and northern Texas, US. Remote Sens. Environ. 2019, 233, 111411. [Google Scholar] [CrossRef]
- Lobell, D.B. The use of satellite data for crop yield gap analysis. Field Crop. Res. 2013, 143, 56–64. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- McCarty, J.L.; Neigh, C.S.R.; Carroll, M.L.; Wooten, M.R. Extracting smallholder cropped area in Tigray, Ethiopia with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. Remote Sens. Environ. 2017, 202, 142–151. [Google Scholar] [CrossRef]
- Apollo Mapping Apollo Mapping Price List. Available online: https://apollomapping.com/image_downloads/Apollo_Mapping_Imagery_Price_List.pdf (accessed on 10 April 2020).
- Hu, T.; Huang, X.; Li, J.; Zhang, L. A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery. Remote Sens. Environ. 2018, 217, 144–157. [Google Scholar] [CrossRef]
Sites (Semi-Arid) | Olive Percentage | Projects | Sites (Sub-Humid) | Olive Percentage | Projects |
---|---|---|---|---|---|
1 | 18.95% | GMP | 6 | 42.89% | GMP, DERRO |
2 | 9.59% | GMP | 7 | 26.58% | GMP, DERRO |
3 | 20.58% | GMP | 8 | 51.48% | GMP, DERRO |
4 | 12.85% | GMP | 9 | 40.15% | GMP, DERRO |
5 | 26.46% | GMP |
Platform | Spectral Bands | Spatial Resolution | Data Processing | No. of Imagery |
---|---|---|---|---|
Worldview-2 | Red (630–690 nm), Green (510–580 nm), Blue (450–510 nm) | 0.5 m | Radiometric Correction; Sensor Correction; Orthorectification | 7 |
Worldview-3 | Red (630–690 nm), Green (510–580 nm), Blue (450–510 nm) | 0.3m | Radiometric Correction; Sensor Correction; Orthorectification | 2 |
Planet | Red (590–670 nm), Green (500–590 nm), Blue (455–515 nm), Near Infrared (780–860 nm) | 3 m | Radiometric Correction; Sensor Correction; Atmospheric Correction; Orthorectification | 108 (one imagery for each month for each site) |
Site (Semi-Arid) | Training Grids | Validation Grids | Testing Grids | Site (Sub-Humid) | Training Grids | Validation Grids | Testing Grids |
---|---|---|---|---|---|---|---|
1 | 1, 3, 5, 7 | 8, 9 | 2, 4, 6 | 6 | 4, 6, 7, 8 | 5, 9 | 1, 2, 3 |
2 | 2, 4, 8, 9 | 1, 7 | 3, 5, 6 | 7 | 2, 5, 6, 7 | 8, 9 | 1, 3, 4 |
3 | 3, 4, 6, 8 | 1, 2 | 5, 7, 9 | 8 | 1, 3, 6, 7 | 8, 9 | 2, 4, 5 |
4 | 4, 7, 8, 9 | 2, 5 | 1, 3, 6 | 9 | 1, 5, 7, 9 | 3, 6 | 2, 4, 8 |
5 | 4, 7, 8, 9 | 3, 6 | 1, 2, 5 |
Site | TP | FP | TN | FN | Precision | Recall | F1 | OA | |
---|---|---|---|---|---|---|---|---|---|
Semi-arid | 1 | 197 | 26 | 765 | 38 | 0.883 | 0.838 | 0.860 | 0.938 |
2 | 95 | 7 | 387 | 21 | 0.931 | 0.819 | 0.872 | 0.945 | |
3 | 198 | 28 | 592 | 14 | 0.876 | 0.934 | 0.904 | 0.950 | |
4 | 188 | 36 | 613 | 18 | 0.839 | 0.913 | 0.874 | 0.937 | |
5 | 104 | 22 | 459 | 9 | 0.825 | 0.920 | 0.870 | 0.948 | |
Overall | 782 | 119 | 2816 | 100 | 0.868 | 0.887 | 0.877 | 0.943 | |
Sub-humid | 6 | 156 | 21 | 341 | 10 | 0.881 | 0.940 | 0.910 | 0.941 |
7 | 178 | 20 | 311 | 24 | 0.899 | 0.881 | 0.89 | 0.917 | |
8 | 129 | 27 | 186 | 18 | 0.827 | 0.878 | 0.851 | 0.875 | |
9 | 247 | 30 | 341 | 6 | 0.892 | 0.976 | 0.932 | 0.942 | |
Overall | 710 | 98 | 1179 | 58 | 0.879 | 0.924 | 0.901 | 0.924 |
Site | TP | FP | TN | FN | Precision | Recall | F1 | OA | |
---|---|---|---|---|---|---|---|---|---|
Semi-arid | 1 | 182 | 35 | 756 | 53 | 0.839 | 0.774 | 0.805 | 0.914 |
2 | 91 | 11 | 383 | 25 | 0.892 | 0.784 | 0.835 | 0.930 | |
3 | 197 | 36 | 584 | 15 | 0.845 | 0.930 | 0.885 | 0.939 | |
4 | 183 | 38 | 611 | 23 | 0.828 | 0.888 | 0.857 | 0.927 | |
5 | 95 | 23 | 458 | 18 | 0.805 | 0.841 | 0.823 | 0.931 | |
Overall | 748 | 143 | 2792 | 134 | 0.840 | 0.848 | 0.844 | 0.927 | |
Sub-humid | 6 | 154 | 21 | 341 | 12 | 0.88 | 0.928 | 0.903 | 0.938 |
7 | 172 | 28 | 303 | 30 | 0.86 | 0.851 | 0.856 | 0.891 | |
8 | 126 | 28 | 185 | 21 | 0.818 | 0.857 | 0.837 | 0.864 | |
9 | 240 | 33 | 338 | 13 | 0.879 | 0.949 | 0.913 | 0.926 | |
Overall | 692 | 110 | 1167 | 76 | 0.863 | 0.901 | 0.882 | 0.909 |
Site | TP | FP | TN | FN | Precision | Recall | F1 | OA | |
---|---|---|---|---|---|---|---|---|---|
Semi-arid | 1 | 574 | 91 | 2331 | 139 | 0.863 | 0.805 | 0.833 | 0.927 |
2 | 161 | 50 | 1239 | 54 | 0.763 | 0.749 | 0.756 | 0.931 | |
3 | 474 | 115 | 1750 | 79 | 0.805 | 0.857 | 0.830 | 0.920 | |
4 | 502 | 121 | 1910 | 77 | 0.806 | 0.867 | 0.835 | 0.924 | |
5 | 503 | 103 | 1097 | 79 | 0.830 | 0.864 | 0.847 | 0.898 | |
Overall | 2214 | 480 | 8327 | 428 | 0.822 | 0.838 | 0.830 | 0.921 | |
Sub-humid | 6 | 522 | 83 | 919 | 60 | 0.863 | 0.897 | 0.880 | 0.910 |
7 | 483 | 92 | 1027 | 79 | 0.84 | 0.859 | 0.850 | 0.898 | |
8 | 497 | 106 | 500 | 93 | 0.824 | 0.842 | 0.833 | 0.834 | |
9 | 658 | 139 | 1074 | 105 | 0.826 | 0.862 | 0.844 | 0.877 | |
Overall | 2160 | 420 | 3520 | 337 | 0.837 | 0.865 | 0.851 | 0.882 |
Site | TP | FP | TN | FN | Precision | Recall | F1 | OA | |
---|---|---|---|---|---|---|---|---|---|
Semi-arid | 1 | 78 | 209 | 582 | 157 | 0.212 | 0.332 | 0.299 | 0.643 |
2 | 35 | 104 | 290 | 81 | 0.252 | 0.302 | 0.275 | 0.637 | |
3 | 123 | 261 | 359 | 89 | 0.320 | 0.580 | 0.413 | 0.579 | |
4 | 90 | 304 | 345 | 116 | 0.228 | 0.437 | 0.3 | 0.509 | |
5 | 44 | 183 | 298 | 69 | 0.194 | 0.389 | 0.259 | 0.576 | |
Overall | 370 | 1061 | 1874 | 512 | 0.259 | 0.420 | 0.320 | 0.588 | |
Sub-humid | 6 | 116 | 146 | 216 | 50 | 0.443 | 0.699 | 0.542 | 0.629 |
7 | 94 | 71 | 260 | 108 | 0.570 | 0.465 | 0.512 | 0.664 | |
8 | 86 | 75 | 138 | 61 | 0.534 | 0.585 | 0.558 | 0.622 | |
9 | 132 | 65 | 306 | 121 | 0.670 | 0.522 | 0.587 | 0.702 | |
Overall | 428 | 357 | 928 | 340 | 0.545 | 0.557 | 0.551 | 0.659 |
Site | TP | FP | TN | FN | Precision | Recall | F1 | OA | |
---|---|---|---|---|---|---|---|---|---|
Semi-arid | 1 | 61 | 73 | 718 | 174 | 0.455 | 0.260 | 0.331 | 0.759 |
2 | 20 | 44 | 350 | 96 | 0.313 | 0.172 | 0.222 | 0.726 | |
3 | 58 | 91 | 529 | 154 | 0.389 | 0.274 | 0.321 | 0.706 | |
4 | 56 | 70 | 579 | 150 | 0.444 | 0.212 | 0.337 | 0.743 | |
5 | 44 | 85 | 396 | 69 | 0.341 | 0.389 | 0.364 | 0.741 | |
Overall | 239 | 363 | 2572 | 643 | 0.397 | 0.271 | 0.322 | 0.736 | |
Sub-humid | 6 | 118 | 47 | 315 | 48 | 0.715 | 0.711 | 0.713 | 0.820 |
7 | 91 | 62 | 269 | 111 | 0.575 | 0.451 | 0.513 | 0.675 | |
8 | 96 | 71 | 142 | 51 | 0.595 | 0.653 | 0.612 | 0.661 | |
9 | 184 | 83 | 288 | 69 | 0.689 | 0.727 | 0.708 | 0.756 | |
Overall | 489 | 263 | 1014 | 279 | 0.650 | 0.637 | 0.643 | 0.735 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Jin, Z.; Mulla, D.; Ghosh, R.; Guan, K.; Kumar, V.; Cai, Y. Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco. Remote Sens. 2021, 13, 1740. https://doi.org/10.3390/rs13091740
Lin C, Jin Z, Mulla D, Ghosh R, Guan K, Kumar V, Cai Y. Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco. Remote Sensing. 2021; 13(9):1740. https://doi.org/10.3390/rs13091740
Chicago/Turabian StyleLin, Chenxi, Zhenong Jin, David Mulla, Rahul Ghosh, Kaiyu Guan, Vipin Kumar, and Yaping Cai. 2021. "Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco" Remote Sensing 13, no. 9: 1740. https://doi.org/10.3390/rs13091740
APA StyleLin, C., Jin, Z., Mulla, D., Ghosh, R., Guan, K., Kumar, V., & Cai, Y. (2021). Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco. Remote Sensing, 13(9), 1740. https://doi.org/10.3390/rs13091740