The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT
Abstract
:1. Introduction
2. Algorithm and Product Description
2.1. Input Data
2.1.1. Level-1B Data
2.1.2. Difference between S3A and S3B Products
- S3A products cover all the globe, while S3B products are restricted to latitudes polewards of 50° (see Figure 1).
- S3A allows the production of many more AMVs than S3B. According to our study, about twice as many AMVs are derived from S3A as from S3B (see Section 3).
- The quality of AMVs, relative to the ECMWF forecast model, is higher for S3B than for S3A (as explained in Section 3).
2.2. Projection of Scans
- Depending on the viewing angle, pixels of the reference frame may represent areas from 1 km × 1 km to 5 km × 5 km. The varying spatial resolution over the images induces a scale factor effect, possibly resulting in tracking inconsistency.
- The tracking is limited to the frame of the reference image. Clouds in both images which moved from outside of the frame (in the second image) to the inside of the frame cannot be tracked.
- This approach uses only one PDU from each orbit. However, successive SLSTR scans may be put in different PDUs, resulting in the loss of potential features lying in these scans.
2.3. Core AMV Algorithm
2.3.1. Target Selection
- At least 25 % of the target’s pixels shall be cloudy. Whether a pixel is cloudy is determined by the cloud mask available in the L1B product.
- Have a stricly positive contrast.
- The whole target lies in the frame of the reference image.
- The whole search area (as defined in Section 2.3.2) lies in the trace of the second image.
2.3.2. Motion Tracking
2.3.3. Height Assignment
2.4. Final Product
3. Results and Validation
3.1. Comparison to ECMWF Forecast Data
3.2. Impact of the Projection Grid Resolution
3.3. Comparison between SLSTR and AHVRR Performances
3.4. Comparison to Co-Localised MSG Data
- The QI of SLSTR vectors shall be above 60, and the QI of SEVIRI vectors shall be above 80.
- There shall be less than 45 min between the two AMVs.
- The distance between AMV locations shall be less than 50 km.
- The difference in height between the two AMVs shall be less than 25 hPa.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- English, S.; McNally, T.; Bormann, N.; Salonen, K.; Matricardi, M.; Moranyi, A.; Rennie, M.; Janisková, M.; Di Michele, S.; Geer, A.; et al. Impact of satellite data. In ECMWF Tech. Memo No 711; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2013. [Google Scholar]
- Le Marshall, J.; Mills, G.; Pescod, N.; Seecamp, R.; Puri, K.K.; Stewart, P.; Leslie, L.M.; Rea, A. The estimation of high density atmospheric motion vectors and their application to operational numerical weather prediction. Aust. Meteorol. Mag. 2002, 51, 173–180. [Google Scholar]
- Kim, M.; Kim, H.M.; Kim, J.W.; Kim, S.M.; Velden, C.; Hoover, B. Effect of enhanced satellite-derived atmospheric motion vectors on numerical weather prediction in East Asia using an adjoint-based observation impact method. Weather Forecast. 2017, 32, 579–594. [Google Scholar] [CrossRef]
- Key, J.R.; Santek, D.; Velden, C.S.; Bormann, N.; Thepaut, J.N.; Riishojgaard, L.P. Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens. 2013, 41, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, M.A.; Dworak, R.; Santek, D.A.; Hoover, B.T.; Velden, C.S.; Key, J.R. High-latitude atmospheric motion vectors from composite satellite data. J. Appl. Meteorol. Climatol. 2014, 53, 534–547. [Google Scholar] [CrossRef]
- Borde, R.; Carranza, M.; Hautecoeur, O.; Barbieux, K. Winds of Change for Future Operational AMV at EUMETSAT. Multidiscip. Digit. Publ. Inst. 2019, 11, 2111. [Google Scholar] [CrossRef] [Green Version]
- Borde, R.; Hautecoeur, O.; Carranza, M. EUMETSAT global AVHRR wind product. J. Atmos. Ocean. Technol. 2016, 33, 429–438. [Google Scholar] [CrossRef]
- Bartolomei, D.M. Generic Projection Tool—Technical Note. In EUMETSAT Internal Document; EUM/RSP/TEN/18/1030434; EUMETSAT: Darmstadt, Germany, 2019. [Google Scholar]
- Mills, S. The ground track oblique Cassini projection used for producing VIIRS mapped imagery. In Proceedings of the Earth Observing Systems XIX. International Society for Optics and Photonics, San Diego, DC, USA, 18–20 August 2014; Volume 9218. [Google Scholar]
- Borde, R.; García-Pereda, J. Impact of wind guess on the tracking of atmospheric motion vectors. J. Atmos. Ocean. Technol. 2014, 31, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Hautecoeur, O.; Borde, R. Derivation of wind vectors from AVHRR/Metop at EUMETSAT. J. Atmos. Ocean. Technol. 2017, 34, 1645–1659. [Google Scholar] [CrossRef]
- Borde, R.; Doutriaux-Boucher, M.; Dew, G.; Carranza, M. A direct link between feature tracking and height assignment of operational EUMETSAT atmospheric motion vectors. J. Atmos. Ocean. Technol. 2014, 31, 33–46. [Google Scholar] [CrossRef]
- Karhila, V.; Hernandez-Carrascal, A. BUFR: A meteorological code for the 21st century. In Proceedings of the EUMETSAT Meteorological Satellite Conference, Córdoba, Spain, 20–24 September 2010; Volume 5. [Google Scholar]
- Holmlund, K. The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Weather Forecast. 1998, 13, 1093–1104. [Google Scholar]
- García-Pereda, J.; Borde, R. The impact of the tracer size and the temporal gap between images in the extraction of atmospheric motion vectors. J. Atmos. Ocean. Technol. 2014, 31, 1761–1770. [Google Scholar] [CrossRef] [Green Version]
S3A | S3A | S3B | S3A | S3A | S3B | |
---|---|---|---|---|---|---|
All AMVs | AMVs | All AMVs | Speed | AMVs | Speed | |
Polewards | >2.5 m/s, | Polewards | >2.5 m/s, | |||
of 50° | QI > 60 | of 50°, | QI > 60 | |||
Speed > 2.5 m/s, | ||||||
QI > 60 | ||||||
RMS [m/s] | 4.90 | 4.96 | 4.57 | 3.60 | 3.46 | 3.27 |
RMSVD [m/s] | 6.50 | 6.30 | 5.96 | 5.06 | 4.86 | 4.65 |
Bias [m/s] | −0.46 | −0.96 | −0.56 | 0.08 | 0.12 | 0.29 |
Number of AMVs | 16,929,930 | 11,399,723 | 9,320,270 | 9,158,914 | 6,491,511 | 4,730,554 |
S3A, 1 km Projection Resolution, Speed > 2.5 m/s, QI > 60 | S3A, 2 km Projection Resolution, Speed > 2.5 m/s, QI > 60 | |
---|---|---|
RMS [m/s] | 3.60 | 3.64 |
RMSVD [m/s] | 5.06 | 5.00 |
Bias [m/s] | 0.08 | −0.25 |
Number of AMVs | 9,158,914 | 1,984,776 |
Sentinel-3A SLSTR | Sentinel-3B SLSTR | Metop-A AVHRR | Metop-B AVHRR | Metop-C AVHRR | |
---|---|---|---|---|---|
Pixel Size at Nadir [m] | 1 | 1 | 1.1 | 1.1 | 1.1 |
Swath Width [km] | 1420 | 1420 | 2900 | 2900 | 2900 |
Temporal Gap between images [mins] | 39.5 | 61.5 | 25 | 49 | 27 |
(as of February 2021) | |||||
Target/Search Box Sizes [pixels] | 24/100 | 24/100 | 28/100 | 28/100 | 28/100 |
Channel Used for AMVs [nm] | 10,854 | 10,854 | 10,800 | 10,800 | 10,800 |
Sentinel-3A | Sentinel-3B | Metop-A | Metop-B | Metop-C | |
---|---|---|---|---|---|
RMSVD [m/s] | 5.06 | 4.65 | 4.81 | 4.35 | 4.02 |
Bias [m/s] | 0.08 | 0.29 | −0.83 | 0.13 | 0.56 |
Number of AMVs [millions] | 9.2 | 4.7 | 11.8 | 16.9 | 24.4 |
S3A/MET08 | S3B/MET08 | S3A/MET11 | S3B/MET11 | |
---|---|---|---|---|
RMS [m/s] | 6.90 | 4.32 | 6.50 | 5.16 |
RMSVD [m/s] | 8.47 | 5.90 | 8.33 | 7.13 |
Bias, SLSTR—SEVIRI [m/s] | 0.83 | 0.36 | 0.40 | 0.83 |
Number of AMVs matched | 7339 | 1835 | 9482 | 1632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieux, K.; Hautecoeur, O.; De Bartolomei, M.; Carranza, M.; Borde, R. The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT. Remote Sens. 2021, 13, 1702. https://doi.org/10.3390/rs13091702
Barbieux K, Hautecoeur O, De Bartolomei M, Carranza M, Borde R. The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT. Remote Sensing. 2021; 13(9):1702. https://doi.org/10.3390/rs13091702
Chicago/Turabian StyleBarbieux, Kévin, Olivier Hautecoeur, Maurizio De Bartolomei, Manuel Carranza, and Régis Borde. 2021. "The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT" Remote Sensing 13, no. 9: 1702. https://doi.org/10.3390/rs13091702
APA StyleBarbieux, K., Hautecoeur, O., De Bartolomei, M., Carranza, M., & Borde, R. (2021). The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT. Remote Sensing, 13(9), 1702. https://doi.org/10.3390/rs13091702