Angle Effect on Typical Optical Remote Sensing Indices in Vegetation Monitoring
Abstract
:1. Introduction
2. Typical Indices Serving for Vegetation Monitoring
3. Data
3.1. Landsat Image Pairs
3.2. Multi-Angle Observation and Anciliary Parameters
3.3. Spectral Response Function
4. Methods
4.1. Simulation of Spaceborne Multispectral Observation
4.2. Estimation of Multi-Angle Remote Sensing Indices
4.3. Pixel-Based VZA Extraction of Landsat TM/ETM+
4.4. Metrics for Difference Assessment
5. Results
5.1. Angle Effect on Pixel-Level Reflectance
5.1.1. Comparison of Sample Sites
5.1.2. Comparison of the Overlapped Area within TM/ETM+ Image Pairs
5.2. Angle Effect on Simulated Indices
5.2.1. Observation Geometry Effect
5.2.2. Influence of Sensor SRF
5.2.3. Dynamic of the Maximum Angle Effect Relative Difference
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaini, N.; Freek, V.; Harald, V. Determination of carbonate rock chemistry using laboratory-based hyperspectral imagery. Remote Sens. 2014, 6, 4149–4172. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Hu, X.; Lu, D. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: A comparison. Int. J. Remote. Sens. 2008, 29, 3209–3232. [Google Scholar] [CrossRef]
- Noh, H.K.; Lu, R. Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biol. Technol. 2007, 43, 193–201. [Google Scholar] [CrossRef]
- Brando, V.; Dekker, A. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1978, 43, 257–259. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Rep. Greenbelt Md 1974, 371, 1–112. [Google Scholar]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote. Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Perry, C.R.; Lautenschlager, L.F. Functional equivalence of spectral vegetation indices. Remote. Sens. Environ. 1984, 14, 169–182. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1995, 58, 257–266. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote. Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Smith, A.M.; Wooster, M.J.; Drake, N.A.; Dipotso, F.M.; Falkowski, M.J.; Hudak, A.T. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African Savannahs. Remote. Sens. Environ. 2005, 97, 92–115. [Google Scholar] [CrossRef] [Green Version]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; Gen. Tech. Rep. RMRS-GTR-164-CD; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 164, p. LA-1-55. [Google Scholar]
- Vogelmann, T.C. Plant tissue optics. Annu. Rev. Plant Biol. 1993, 44, 231–251. [Google Scholar] [CrossRef]
- Kushla, J.D.; Ripple, W.J. Assessing wildfire effects with Landsat thematic mapper data. Int. J. Remote. Sens. 1998, 19, 2493–2507. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote. Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Yang, H.F.; Li, J.L.; Mu, S.J.; Yang, Q.; Hu, X.X.; Jin, G.P.; Zhao, W.Y. Analysis of hyperspectral reflectance characteristics of three main grassland types in Xinjiang. Acta Prataculturae Sin. 2012, 21, 258–266. [Google Scholar]
- Kimes, D.S.; Newcomb, W.W.; Nelson, R.F.; Schutt, J.B. Directional Reflectance Distributions of a Hardwood and Pine Forest Canopy. IEEE Trans. Geosci. Remote. Sens. 1986, GE-24, 281–293. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhong, B.; Yang, F.J.; Liu, Q. Extraction of BRDF characteristics using TM/ETM+ and DEM data. J. Remote Sens. 2021, 16, 361–377. [Google Scholar]
- Xu., M.; Yi, S.H.; Ye, B.S.; Ren, S.L.; Zhou, Z.Y. Influence of PVC and sun/view geometry on NDVI and SAVI in the upstream regions of Shule river basin. J. Arid Land Resour. Environ. 2012, 26, 101–107. [Google Scholar]
- Liang, S.L.; Li, X.W.; Wang, J.D. Quantitative Remote Sensing: Concepts and Algorithms, 2nd ed.; Science Press: Beijing, China, 2019. [Google Scholar]
- Kimes, D.; Sellers, P. Inferring hemispherical reflectance of the earth’s surface for global energy budgets from remotely sensed nadir or directional radiance values. Remote. Sens. Environ. 1985, 18, 205–223. [Google Scholar] [CrossRef]
- Epiphanio, J.; Huete, A.R. Dependence of NDVI and SAVI on sun/sensor geometry and its effect on fAPAR relationships in Alfalfa. Remote. Sens. Environ. 1995, 51, 351–360. [Google Scholar] [CrossRef]
- Shuai, Y.M.; Ma, X.W.; Qu, G.; Shao, C.Y.; Liu, T.; Liu, S.M.; Huang, H.B.; Gu, L.X.; La, T.; Liang, J.; et al. Cascade extraction of impervious surface information based on the signature of temporal spectrum. J. Geo-Inf. Sci. 2021, 23, 171–186. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lu, D.D.; Wu, S.T. Quantitative comparison of normalized difference water index og GF-1 and Landsat8 images in Karst region. J. Atmos. Environ. Opt. 2020, 15, 125–133. [Google Scholar]
- Huete, A.; Hua, G.; Qi, J.; Chehbouni, A.; van Leeuwen, W. Normalization of multidirectional red and NIR reflectances with the SAVI. Remote. Sens. Environ. 1992, 41, 143–154. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Vermote, E.F.; Jiang, Z. Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites. Remote. Sens. Environ. 2011, 115, 3112–3120. [Google Scholar] [CrossRef]
- Shuai, Y.M.; Yang, J.; Wu, H.; Shao, C.Y.; Xu, X.C.; Liu, M.Y.; Liu, T.; Liang, J. Variation of multi-angle reflectance collected by UAV over quadrats of paddy-field canopy. Remote Sens. Technol. Appl. 2021, 36, 1–11. [Google Scholar]
- Brede, B.; Suomalainen, J.; Bartholomeus, H.; Herold, M. Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest. Remote. Sens. Lett. 2015, 6, 972–981. [Google Scholar] [CrossRef]
- Galvão, L.S.; Breunig, F.M.; Dos Santos, J.R.; De Moura, Y.M. View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 291–300. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Taniguchi, K.; Obata, K.; Matsuoka, M.; Yoshiokay, H. View-angle dependencies of vegetation isolines for higher-order standardization of spectral vegetation indices. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2114–2117. [Google Scholar]
- Bégué, A. Leaf area index, intercepted photosynthetically active radiation, and spectral vegetation indices: A sensitivity analysis for regular-clumped canopies. Remote. Sens. Environ. 1993, 46, 45–59. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Tian, Q.-J.; Shen, R.-P. Analysis of Directional Characteristics of Winter Wheat Canopy Spectra. Spectrosc. Spectr. Anal. 2010, 30, 1600–1605. [Google Scholar]
- Goodin, D.; Gao, J.; Henebry, G. The Effect of Solar Illumination Angle and Sensor View Angle on Observed Patterns of Spatial Structure in Tallgrass Prairie. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 154–165. [Google Scholar] [CrossRef]
- Wulder, M.A.; Ortlepp, S.M.; White, J.C.; Maxwell, S. Evaluation of Landsat-7 SLC-off image products for forest change detection. Can. J. Remote. Sens. 2008, 34, 93–99. [Google Scholar] [CrossRef]
- Chander, G.; Helder, D.; Markham, B.; Dewald, J.; Kaita, E.; Thome, K.; Micijevic, E.; Ruggles, T. Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 2747–2760. [Google Scholar] [CrossRef]
- USGS, NASA and LANDSAT 7 SCIENCE TEAM 2003, Preliminary Assessment of the Value of Landsat 7 ETM + Data Following Scan Line Corrector Malfunction. Available online: https://www.usgs.gov/media/files/preliminary-assessment-value-landsat-7-etm-slc-data (accessed on 11 April 2021).
- Huang, W.J.; Wang, J.H.; Liu, L.Y.; Wang, J.; Tan, C.; Li, C.; Wang, Z.; Song, X. Remote sensing identification of plant structural types based on multi-temporal and bidirectional canopy spectrum. Trans. CSAE 2005, 21, 82–86. [Google Scholar]
- Wang, J.D.; Zhang, L.X.; Liu, Q.H.; Zhang, B.; Yin, Q.; Li, P.; Zhao, G.X.; Gao, M.X.; Chang, C.Y.; Wang, Z.R.; et al. Spectral Database System of Typical Objects in China; Science Press: Beijing, China, 2009. [Google Scholar]
- Chen, S.P. The Dictionary of Remote Sensing; Science Press: Beijing, China, 1990. [Google Scholar]
- Franke, J.; Heinzel, V.; Menz, G. Assessment of NDVI- Differences Caused by Sensor Specific Relative Spectral Response Functions. In Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 1138–1141. [Google Scholar]
- Li, P.; Zhao, G.X.; Gao, M.X.; Chang, C.Y.; Wang, Z.R.; Zhang, T.R.; An, D.Y.; Jia, J.C. Hyperspectral estimation and remote sensing retrieval of soil water regime in the yellow river delta. Acta Pedol. Sin. 2015, 52, 1262–1272. [Google Scholar]
- Roy, D.; Zhang, H.; Ju, J.; Gomez-Dans, J.; Lewis, P.; Schaaf, C.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote. Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef] [Green Version]
Optical Remote Sensing Index | Calculation Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index, NDVI | Rouse et al., 1974 | |
Enhanced Vegetation Index, EVI | Huete et al., 2002 | |
Soil-Adjusted Vegetation Index, SAVI | Huete, 1988 | |
Ratio Vegetation Index, RVI | Jordan, 1969 | |
Char Soil Index, CSI | Smith et al., 2005 | |
Mid-IR Bispectral Index, MIRBI | Trigg and Flasse, 2001 | |
Normalized Burn Ratio, NBR | Key and Benson, 2006 | |
Normalized Difference Moisture Index, NDMI | Gao, 1995 | |
Normalized Difference Water Index, NDWI | McFeeters, 1996 | |
SWIR1/NIR | Vogelmann, 1993 | |
SWIR2/NIR | Kushla and Ripple, 1998 | |
SWIR2/SWIR1 | Epting et al., 2005 |
Landsat Product Identifier | Sensor | Data | Image Size | Solar Azimuth | Observation Direction |
---|---|---|---|---|---|
LT05_L1TP_124032_ 20010416_20161211_01_T1 | TM | 2001.04.16 | 7351 × 7991 | 137.0240° | Forward (+) |
LE07_L1TP_123032_ 20010417_20170205_01_T1 | ETM+ | 2001.04.17 | 7241 × 7951 | 140.2951° | Backward (−) |
LT05_L1TP_123032_ 20040417_20161202_01_T1 | TM | 2004.04.17 | 7201 × 7961 | 136.6601° | Backward (−) |
LE07_L1TP_124032_ 20040416_20170122_01_T1 | ETM+ | 2004.04.16 | 7371 × 8041 | 140.0433° | Forward (+) |
VZA | L | R |
---|---|---|
L5TM | +2.25 | +7.50 |
L7ETM+ | −7.50 | −2.25 |
Data | Growth Phase | Observation Time | |||
---|---|---|---|---|---|
PP | CPP | AC | CR | ||
17 April | Jointing stage | 11:04 | 11:11 | 11:15 | 11:20 |
3 May | Booting stage | 11:20 | 11:26 | 11:30 | 11:34 |
20 May | Filling stage | 11:26 | 11:33 | 11:37 | 11:41 |
9 June | Wax maturity stage | 11:12 | 11:18 | 11:22 | 11:26 |
Result | TM 2001 Forward | ETM+ 2001 Backward | TM 2004 Backward | ETM+ 2004 Forward | |||
---|---|---|---|---|---|---|---|
Index | |||||||
NDVI | 0.4710 | 0.4260 | 0.3977 | 0.4738 | 9.55 | 19.14 | |
EVI | 0.3318 | 0.3333 | 0.3318 | 0.3333 | 0.45 | 0.45 | |
SAVI | 0.3021 | 0.2764 | 0.2647 | 0.2944 | 8.51 | 11.22 | |
RVI | 2.7804 | 2.8011 | 2.3206 | 2.8011 | 0.74 | 20.71 | |
CSI | 1.3565 | 1.3516 | 1.2310 | 1.1233 | 0.36 | 8.75 | |
MIRBI | 1.2935 | 1.3322 | 1.3153 | 1.5034 | 2.99 | 14.3 | |
NBR | 364.9689 | 351.9025 | 289.9792 | 189.2262 | 3.58 | 34.74 | |
NDMI | 0.1513 | 0.1495 | 0.1035 | 0.0581 | 1.19 | 43.86 | |
NDWI | −0.4670 | −0.4083 | −0.3932 | −0.4831 | 12.57 | 22.86 | |
SWIR1/NIR | 0.7372 | 0.7399 | 0.8123 | 0.8902 | 0.37 | 9.59 | |
SWIR2/NIR | 0.4652 | 0.4794 | 0.5504 | 0.6818 | 3.05 | 23.87 | |
SWIR2/SWIR1 | 0.6311 | 0.6479 | 0.6776 | 0.7658 | 2.66 | 13.02 |
Index | Angle Effect (%) | SRF (%) |
---|---|---|
NDVI | [4.0, 4.2] | 1.3 |
EVI | [27.0, 29.7] | 2.4 |
SAVI | [17.2, 29.7] | 1.1 |
RVI | [44.9, 55.7] | 12.1 |
CSI | [17.2, 18.0] | 7.7 |
MIRBI | [40.7, 64] | 19.4 |
NBR | [8.4, 10.9] | 4.6 |
NDMI | [15.4, 16.0] | 5.9 |
NDWI | [5.0, 5.7] | 4.8 |
SWIR1/NIR | [20.8, 22.0] | 7.7 |
SWIR2/NIR | [39.0, 44.1] | 20.1 |
SWIR2/SWIR1 | [21.3, 26.8] | 26.1 |
Order | Index | Jointing Stage | Booting Stage | Filling Stage | Wax Maturity Stage |
---|---|---|---|---|---|
1 | NDVI | [4.0, 4.2] | [3.6, 3.9] | [6.8, 7.2] | [32.2, 38.2] |
2 | EVI | [27.0, 29.7] | [45.5, 48.5] | [21.5, 23.8] | [54.0, 66.4] |
3 | SAVI | [17.2, 17.9] | [28.6, 29.4] | [15.2, 16.0] | [50.4, 57.6] |
4 | RVI | [44.9, 55.7] | [63.3, 73.3] | [81.3, 91.4] | [42.8, 51.1] |
5 | CSI | [17.2, 18.0] | [29.7, 30.2] | [33.3, 35.5] | [73.2, 78.9] |
6 | MIRBI | [40.7, 64.0] | [48.6, 65.6] | [9.3, 12.6] | [20.8, 24.5] |
7 | NBR | [8.4, 10.9] | [10.2, 12.6] | [14.2, 15.9] | [99.5, 115.8] |
8 | NDMI | [15.4, 16.0] | [22.5, 23.9] | [24.7, 25.8] | [161.6, 206.7] |
9 | NDWI | [5.0, 5.7] | [5.6, 6.8] | [8.2, 8.7] | [18.6, 21.6] |
10 | SWIR1/NIR | [20.8, 22.0] | [42.1, 43.2] | [25.0, 26.2] | [42.2, 44.1] |
11 | SWIR2/NIR | [39.0, 44.1] | [61.0, 66.4] | [40.1, 42.7] | [63.4, 65. 6] |
12 | SWIR2/SWIR1 | [21.3, 26.8] | [13.3, 17.6] | [19.0, 23.6] | [36.0, 40.3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Shuai, Y.; Shao, C.; Xie, D.; Zhang, Q.; Li, Y.; Yang, J. Angle Effect on Typical Optical Remote Sensing Indices in Vegetation Monitoring. Remote Sens. 2021, 13, 1699. https://doi.org/10.3390/rs13091699
Gu L, Shuai Y, Shao C, Xie D, Zhang Q, Li Y, Yang J. Angle Effect on Typical Optical Remote Sensing Indices in Vegetation Monitoring. Remote Sensing. 2021; 13(9):1699. https://doi.org/10.3390/rs13091699
Chicago/Turabian StyleGu, Lingxiao, Yanmin Shuai, Congying Shao, Donghui Xie, Qingling Zhang, Yaoming Li, and Jian Yang. 2021. "Angle Effect on Typical Optical Remote Sensing Indices in Vegetation Monitoring" Remote Sensing 13, no. 9: 1699. https://doi.org/10.3390/rs13091699
APA StyleGu, L., Shuai, Y., Shao, C., Xie, D., Zhang, Q., Li, Y., & Yang, J. (2021). Angle Effect on Typical Optical Remote Sensing Indices in Vegetation Monitoring. Remote Sensing, 13(9), 1699. https://doi.org/10.3390/rs13091699