Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization
Abstract
1. Introduction
2. Materials and Methods
2.1. Sparse SAR Imaging Formation
2.2. Nonconvex and TV Regularization
2.3. Variable Splitting and Modified ADMM
- is a continuous function that is possibly nonsmooth and nonconvex, and can be rewritten as the difference of two convex functions;
- can be written as ;
- the objective function is lower-bounded;
Algorithm 1 Variable splitting and modified ADMM for nonconvex and total variation regularization |
|
2.4. Sparse SAR Imaging Evaluation Index
- Physical Significance of Sparse SAR Imaging Results
- Radiometric Accuracy
- Radiometric Resolution
- Spatial Resolution
3. Results
3.1. GF-3 SAR Data Description
3.2. Data Processing and Image Quality Assessment
- Experiment 1
- Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ender, J.H. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [Google Scholar] [CrossRef]
- Zhang, B.; Hong, W.; Wu, Y. Sparse microwave imaging: Principles and applications. Sci. China Inf. Sci. 2012, 55, 1722–1754. [Google Scholar] [CrossRef]
- Cetin, M.; Stojanovic, I.; Onhon, O.; Varshney, K.; Samadi, S.; Karl, W.C.; Willsky, A.S. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Process. Mag. 2014, 31, 27–40. [Google Scholar] [CrossRef]
- Ao, D.; Wang, R.; Hu, C.; Li, Y. A Sparse SAR Imaging Method Based on Multiple Measurement Vectors Model. Remote Sens. 2017, 9, 297. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, B.; Zhu, X.X.; Jiang, C.; Hong, W. Extended Chirp Scaling-Baseband Azimuth Scaling-Based Azimuth-Range Decouple L1 Regularization for TOPS SAR Imaging via CAMP. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3748–3763. [Google Scholar] [CrossRef]
- Baraniuk, R.; Steeghs, P. Compressive radar imaging. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 128–133. [Google Scholar]
- Alonso, M.T.; López-Dekker, P.; Mallorquí, J.J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4285–4295. [Google Scholar] [CrossRef]
- Patel, V.M.; Easley, G.R.; Healy, D.M., Jr.; Chellappa, R. Compressed synthetic aperture radar. IEEE J. Sel. Top. Signal Process. 2010, 4, 244–254. [Google Scholar] [CrossRef]
- Osher, S.; Ruan, F.; Xiong, J.; Yao, Y.; Yin, W. Sparse recovery via differential inclusions. Appl. Comput. Harmon. Anal. 2016, 41, 436–469. [Google Scholar] [CrossRef]
- Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar]
- Güven, H.E.; Güngör, A.; Cetin, M. An augmented lagrangian method for complex-valued compressed sar imaging. IEEE Trans. Comput. Imaging 2016, 2, 235–250. [Google Scholar] [CrossRef]
- Selesnick, I. Sparse regularization via convex analysis. IEEE Trans. Signal Process. 2017, 65, 4481–4494. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, B.; Wu, Y. A SAR imaging method based on generalized minimax-concave penalty. Sci. China Inf. Sci. 2019, 62, 1–3. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, C.; Lu, Z.; Huang, J.; Ye, J. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 37–45. [Google Scholar]
- Uḡur, S.; Arıkan, O. SAR image reconstruction and autofocus by compressed sensing. Digit. Signal Process. 2012, 22, 923–932. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.G.; Zhang, B.; Hong, W.; Wu, Y.R. Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2765–2774. [Google Scholar] [CrossRef]
- Kang, M.S.; Kim, K.T. Compressive sensing based SAR imaging and autofocus using improved Tikhonov regularization. IEEE Sens. J. 2019, 19, 5529–5540. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, M.; Zhou, G.; Wei, Z.; Zhang, B.; Wu, Y. An Accurate Sparse SAR Imaging Method for Enhancing Region-Based Features Via Nonconvex and TV Regularization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 350–363. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, W.; Lin, Z.; Gao, H.; Shi, S. Millimeter-Wave InSAR Image Reconstruction Approach by Total Variation Regularized Matrix Completion. Remote Sens. 2018, 10, 1053. [Google Scholar] [CrossRef]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Trans. Image Process. 2010, 19, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems. IEEE Trans. Image Process. 2011, 20, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, Z.; Zhang, P.; Tao, H.; Zeng, J. A preliminary evaluation of the GaoFen-3 SAR radiation characteristics in land surface and compared with Radarsat-2 and Sentinel-1A. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1040–1044. [Google Scholar] [CrossRef]
- Mittermayer, J.; Younis, M.; Metzig, R.; Wollstadt, S.; Martínez, J.M.; Meta, A. TerraSAR-X system performance characterization and verification. IEEE Trans. Geosci. Remote Sens. 2009, 48, 660–676. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA, 2004. [Google Scholar]
- Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Poggi, G. Nonlocal CNN SAR Image Despeckling. Remote Sens. 2020, 12, 1006. [Google Scholar] [CrossRef]
- Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 2004, 20, 89–97. [Google Scholar]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast compressed sensing SAR imaging based on approximated observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 352–363. [Google Scholar] [CrossRef]
- Potter, L.C.; Ertin, E.; Parker, J.T.; Cetin, M. Sparsity and compressed sensing in radar imaging. Proc. IEEE 2010, 98, 1006–1020. [Google Scholar] [CrossRef]
- Lee, J.S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
Method | A1 | A2 | A3 | A4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CSA | 10.912 | / | 11.383 | / | 1.0432 | 11.664 | / | 1.0689 | 12.374 | / | 1.1340 |
CSA + ML | 10.906 | / | 11.375 | / | 1.0430 | 11.671 | / | 1.0701 | 12.367 | / | 1.1340 |
8.2309 | 0.2457 | 8.6820 | 0.2373 | 1.0548 | 8.9710 | 0.2309 | 1.0899 | 9.6036 | 0.2239 | 1.1668 | |
and TV | 7.1261 | 0.3469 | 7.5889 | 0.3333 | 1.0649 | 7.8861 | 0.3239 | 1.1067 | 8.5145 | 0.3119 | 1.1948 |
MC and TV | 10.557 | 0.0325 | 11.077 | 0.0269 | 1.0493 | 11.447 | 0.0186 | 1.0843 | 12.141 | 0.0188 | 1.1500 |
Method | ENL | (dB) | Target | ||
---|---|---|---|---|---|
CSA CSA + ML and TV MC and TV | 2.3668 2.3661 1.4625 1.4029 2.3665 | 1.7217 0.1104 1.5837 0.0255 0.0193 | 0.8889 13.8518 0.3690 21.080 79.340 | 3.1401 1.0335 4.2263 0.8558 0.4621 | F1 |
CSA CSA + ML and TV MC and TV | 2.2768 2.2763 1.3752 1.3124 2.2759 | 1.5575 0.0871 1.4180 0.0217 0.0170 | 0.9093 16.2510 0.3644 21.667 83.403 | 3.1148 0.9624 4.2434 0.8452 0.4513 | F2 |
CSA CSA + ML and TV MC and TV | 2.2863 2.2864 1.3844 1.3218 2.2853 | 1.5989 0.1027 1.4597 0.0244 0.0183 | 0.8932 13.9013 0.3587 19.548 78.162 | 3.1347 1.0319 4.2646 0.8855 0.4654 | F3 |
CSA CSA + ML and TV MC and TV | 2.2835 2.2834 1.3823 1.3192 2.2827 | 1.6114 0.1056 1.4701 0.0240 0.0183 | 0.8941 13.4943 0.3551 19.774 77.959 | 3.1461 1.0456 4.2782 0.8809 0.4660 | F4 |
Method | ENL | (dB) | Target | |||
---|---|---|---|---|---|---|
CSA CSA + ML & TV MC & TV | 9.8115 9.8021 6.9433 6.0151 9.1418 | / / 0.2923 0.3869 0.0683 | 27.237 1.8626 37.382 1.1548 1.4164 | 0.9657 14.094 0.3524 8.5602 16.120 | 3.0484 1.0256 4.2889 1.2768 0.9659 | A1 |
CSA CSA + ML & TV MC & TV | 10.073 10.068 7.3991 6.5702 9.7939 | / / 0.2655 0.3477 0.0277 | 29.682 2.5807 42.103 1.8127 1.7385 | 0.9339 10.730 0.3553 6.5064 15.075 | 3.0852 1.1570 4.2777 1.4365 0.9953 | A2 |
CSA CSA + ML & TV MC & TV | 10.340 10.334 7.8030 6.7917 9.9845 | / / 0.2454 0.3432 0.0344 | 29.943 2.1585 43.340 1.5232 1.3465 | 0.9755 13.516 0.3838 8.2740 20.227 | 3.0373 1.0449 4.1732 1.2958 0.8719 | A3 |
CSA CSA + ML & TV MC & TV | 10.726 10.725 8.1305 7.2285 10.557 | / / 0.2420 0.3261 0.0158 | 32.826 2.6600 48.634 1.8624 1.7436 | 0.9576 11.815 0.3714 7.6652 17.463 | 3.0576 1.1090 4.2176 1.3392 0.9318 | A4 |
MC & TV | Downsampling Ratio | |||||
---|---|---|---|---|---|---|
80% | 70% | 60% | 50% | 40% | 30% | |
0.0241 | 0.0276 | 0.0357 | 0.0704 | 0.1195 | 0.2402 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhang, B.; Zhou, G.; Zhong, L.; Wu, Y. Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sens. 2021, 13, 1643. https://doi.org/10.3390/rs13091643
Xu Z, Zhang B, Zhou G, Zhong L, Wu Y. Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sensing. 2021; 13(9):1643. https://doi.org/10.3390/rs13091643
Chicago/Turabian StyleXu, Zhongqiu, Bingchen Zhang, Guoru Zhou, Lihua Zhong, and Yirong Wu. 2021. "Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization" Remote Sensing 13, no. 9: 1643. https://doi.org/10.3390/rs13091643
APA StyleXu, Z., Zhang, B., Zhou, G., Zhong, L., & Wu, Y. (2021). Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sensing, 13(9), 1643. https://doi.org/10.3390/rs13091643