Assessment of Rangeland Degradation in New Mexico Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND)
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Vegetation Cover
2.3. GIMMS NDVI
2.4. Rangeland Productivity
2.5. Precipitation, Drought, and Fire
3. Methods
3.1. Characterization of Change in Productivity Using TSS-RESTREND
3.1.1. NDVI and Precipitation Relationships
3.1.2. Identification of Breakpoints
3.1.3. Identification of Structural Changes
- Non-reversable degradation or initiation of degradation if it exhibited a breakpoint with p < 0.05 and a negative change (Table 1) in productivity as detected by Segmented VPR or Segmented RESTREND, respectively,
- Reversal or initiation of reversal in degradation, if it met the previous conditions except with a positive as detected by Segmented VPR or Segmented RESTREND, respectively,
- Stable increase in productivity, if it exhibited a breakpoint with p < 0.05 and a positive change as detected by RESTREND,
- Non-significant change (NSC) in productivity irrespective of the detection technique used (i.e., Segmented VPR, Segmented RESTREND, RESTREND, or Indeterminant), if it had a breakpoint with p > 0.1 and a constant direction change (i.e., 0),
- Indeterminate change if it had p = 0 and slope = 0.
3.2. Breakpoints Assessment Framework
4. Results
4.1. Characteristics of Change
4.1.1. Breakpoints and Direction of Change
4.1.2. Observed Types of Structural Changes
4.2. Dominant Land Cover Class Changes
4.3. Assessment of Breakpoints
4.3.1. Identified Random Samples
4.3.2. Changes in Productivity at Pixel Level
4.3.3. Changes in Productivity at Ecoregion Level
5. Discussion
5.1. Characteristics of Change
5.2. Land Cover Changes Relative to Drought and Wildfire
5.2.1. Detected Changes Compared to Previous Studies and Current Restoration Activities
5.2.2. Breakpoints and Drought
5.2.3. Breakpoints and Wildfire
5.3. Breakpoints and the RPMS
6. Limitation and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ecoregions | Decreasing | Increasing | NSC | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
52 | 71 | 82 | 31 | 42 | 52 | 71 | 82 | 42 | 52 | 71 | ||
Arizona/New Mexico Mountains | 1 | 1 | 0 | 0 | 1 | 10 | 1 | 0 | 0 | 0 | 1 | 16 |
Arizona/New Mexico Plateau | 13 | 4 | 0 | 0 | 0 | 16 | 7 | 0 | 1 | 2 | 0 | 43 |
Chihuahua Desert | 21 | 1 | 0 | 1 | 0 | 73 | 6 | 0 | 0 | 5 | 0 | 106 |
Colorado Plateaus | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 6 |
High Plains | 4 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 11 |
Madrean Archipelago | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 0 | 5 |
Southwestern Tablelands | 10 | 16 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 31 |
Total | 53 | 24 | 1 | 1 | 1 | 106 | 18 | 1 | 1 | 9 | 4 | 219 |
Ecoregions | Decreasing | Increasing | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|
22 | 52 | 71 | 90 | 95 | 42 | 52 | 71 | 52 | ||
Arizona/New Mexico Mountains | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 6 |
Arizona/New Mexico Plateau | 0 | 1 | 2 | 1 | 0 | 0 | 6 | 4 | 0 | 13 |
Chihuahua Desert | 1 | 37 | 1 | 0 | 1 | 0 | 25 | 4 | 0 | 68 |
Colorado Plateaus | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
High Plains | 0 | 9 | 6 | 1 | 0 | 0 | 1 | 0 | 0 | 16 |
Madrean Archipelago | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Southern Rockies | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Southwestern Tablelands | 0 | 15 | 30 | 0 | 1 | 1 | 4 | 6 | 1 | 58 |
Total | 1 | 65 | 39 | 1 | 1 | 1 | 40 | 16 | 1 | 165 |
Appendix B
Ecoregions | Insignificant Difference | Significant Difference | Total | ||
---|---|---|---|---|---|
Decreasing | Increasing | Decreasing | Increasing | ||
Arizona/New Mexico Mountains | 1 | 0 | 0 | 0 | 1 |
Arizona/New Mexico Plateau | 0 | 0 | 1 | 7 | 8 |
Chihuahua Desert | 0 | 3 | 1 | 0 | 4 |
Southwestern Tablelands | 1 | 0 | 10 | 0 | 11 |
Total | 2 | 3 | 12 | 7 | 24 |
Ecoregions | Insignificant Difference | Significant Difference | Total | ||
---|---|---|---|---|---|
Decreasing | Increasing | Decreasing | Increasing | ||
Arizona/New Mexico Mountains | 1 | 1 | 0 | 3 | 5 |
Arizona/New Mexico Plateau | 5 | 1 | 5 | 8 | 19 |
Chihuahua Desert | 1 | 32 | 12 | 0 | 45 |
Southwestern Tablelands | 0 | 0 | 8 | 0 | 8 |
Total | 6 | 33 | 26 | 11 | 76 |
Appendix C
Trend | Ecoregion | Shrublands | Grasslands | ||||
---|---|---|---|---|---|---|---|
Welch’s t-Statistic | df | p | Welch’s t-Statistic | df | p | ||
Decreasing | Chihuahua Desert | −4.35 | 1379 | ≤0.0001 s | −1.23 | 39 | 0.227 |
Arizona/New Mexico Mountains | 0.33 | 119 | 0.742 | −1.98 | 69.6 | 0.0516 | |
Southwestern Tablelands | −1.79 | 735 | 0.0745 | −4.35 | 1053 | ≤0.0001 *** | |
Arizona/New Mexico Plateau | 2.06 | 1122 | 0.0397 * | 2.38 | 126 | 0.019 * | |
Increasing | Chihuahua Desert | 2.34 | 2178 | 0.0194 * | 1.47 | 196 | 0.143 |
Arizona/New Mexico Mountains | 2.72 | 108 | 0.00765 ** | - | - | - | |
Southwestern Tablelands | - | - | - | - | - | - | |
Arizona/New Mexico Plateau | 1.42 | 857 | 0.157 | 2.4 | 736 | 0.065 * |
References
- Katyal, J.C.; Vlek, P.L.G. Desertification: Concept, Causes and Amelioration; ZEF Discussion Papers on Development Policy, N. 33; University of Bonn, Center for Development Research (ZEF): Bonn, Germany, 2000. [Google Scholar]
- Hoover, D.L.; Bestelmeyer, B.; Grimm, N.B.; Huxman, T.E.; Reed, S.C.; Sala, O.; Seastedt, T.R.; Wilmer, H.; Ferrenberg, S. Traversing the Wasteland: A Framework for Assessing Ecological Threats to Drylands. BioScience 2020, 70, 35–47. [Google Scholar] [CrossRef]
- World Resources Institute (Ed.) Ecosystems and Human Well-Being: Desertification Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-590-9. [Google Scholar]
- Noojipady, P.; Prince, S.D.; Rishmawi, K. Reductions in Productivity Due to Land Degradation in the Drylands of the Southwestern United States. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Melack, J.; Tian, Y.; Huang, H.; Jiang, J.; Fu, X.; Zhang, Z. Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and GIMMS NDVI3g Data. Remote Sens. 2019, 11, 1014. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in Semi-Arid Areas across the Globe 1981–2007—An Earth Observing Satellite Based Analysis of Trends and Drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Higginbottom, T.; Symeonakis, E. Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting Dryland Degradation Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the World’s Degraded Lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- UNEP. Global Drylands: A UN System-Wide Response. Report 1. 132. Available online: https://www.unep-wcmc.org/resources-and-data/global-drylands--a-un-system-wide-response (accessed on 17 April 2021).
- Evans, J.; Geerken, R. Discrimination between Climate and Human-Induced Dryland Degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Land Degradation by Main Type of Rural Land Use in Dryland Areas. Available online: http://www.fao.org/3/X5308E/x5308e04.htm#3.%20land%20degradation%20by%20main%20type%20of%20rural%20land%20use%20in%20dryland%20areas (accessed on 14 February 2020).
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to Detectability of Land Degradation by Trend Analysis of Vegetation Index Data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- IPBES. The Assessment Report on Land Degradation and Restoration. 748. Available online: https://www.ipbes.net/assessment-reports/ldr (accessed on 18 April 2021).
- Mirzabaev, A.J.; Wu, J.; Evans, F.; García-Oliva, I.A.G.; Hussein, M.H.; Iqbal, J.; Kimutai, T.; Knowles, F.; Meza, D.; Nedjraoui, F.; et al. Weltz, 2019: Desertification. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; in press; Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/06_Chapter-3.pdf (accessed on 18 April 2021).
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing Turning Points in Ecosystem Functioning over the Northern Eurasian Agricultural Frontier. Glob. Chang. Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef] [PubMed]
- Houerou, H.N.L. Rain Use Efficiency: A Unifying Concept in Arid-Land Ecology. J. Arid Environ. 1984, 7, 213–247. [Google Scholar]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing Land Degradation/Recovery in the African Sahel from Long-Term Earth Observation Based Primary Productivity and Precipitation Relationships. Remote Sens. 2013, 5, 664–686. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; McVicar, T.R. Global Changes in Dryland Vegetation Dynamics (1988–2008) Assessed by Satellite Remote Sensing: Comparing a New Passive Microwave Vegetation Density Record with Reflective Greenness Data. Biogeosciences 2013, 10, 6657–6676. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.L.; Evans, J.P.; Liu, Y. The Impact of Dataset Selection on Land Degradation Assessment. ISPRS J. Photogramm. Remote Sens. 2018, 146, 22–37. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; Liu, Y. The Addition of Temperature to the TSS-RESTREND Methodology Significantly Improves the Detection of Dryland Degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2342–2348. [Google Scholar] [CrossRef]
- Heumann, B.W.; Seaquist, J.W.; Eklundh, L.; Jönsson, P. AVHRR Derived Phenological Change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ. 2007, 108, 385–392. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent Trends in Vegetation Dynamics in the African Sahel and Their Relationship to Climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Prince, S.D.; Wessels, K.J.; Tucker, C.J.; Nicholson, S.E. Desertification in the Sahel: A Reinterpretation of a Reinterpretation. Glob. Chang. Biol. 2007, 13, 1308–1313. [Google Scholar] [CrossRef] [Green Version]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Grippa, M.; Mougin, E.; Ciais, P.; Nguyen, C.-C. Rain-Use-Efficiency: What It Tells Us about the Conflicting Sahel Greening and Sahelian Paradox. Remote Sens. 2014, 6, 3446–3474. [Google Scholar] [CrossRef] [Green Version]
- Bernardino, P.N.; De Keersmaecker, W.; Fensholt, R.; Verbesselt, J.; Somers, B.; Horion, S. Global-scale Characterization of Turning Points in Arid and Semi-arid Ecosystem Functioning. Glob. Ecol. Biogeogr. 2020, 29, 1230–1245. [Google Scholar] [CrossRef] [Green Version]
- Archer, E.R.M. Beyond the “Climate versus Grazing” Impasse: Using Remote Sensing to Investigate the Effects of Grazing System Choice on Vegetation Cover in the Eastern Karoo. J. Arid Environ. 2004, 57, 381–408. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near Real-Time Disturbance Detection Using Satellite Image Time Series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Robin, P.W.; Nackoney, J. Drylands, People, and Ecosystem Goods and Services: A Web-Based Geospatial Analysis; PDF Version; World Resources Institute; Available online: http://pdf.wri.org/drylands (accessed on 18 April 2021).
- Thomas, P.H.; Symeonakis, E. Identifying Ecosystem Function Shifts in Africa Using Breakpoint Analysis of Long-Term NDVI and RUE Data. Remote. Sens. 2020, 12, 1894. [Google Scholar] [CrossRef]
- Schuman, G.E.; Janzen, H.H.; Herrick, J.E. Soil Carbon Dynamics and Potential Carbon Sequestration by Rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Havstad, K.; Peters, D.; Allen-Diaz, B.; Bartolome, J.; Bestelmeyer, B.; Briske, D.; Brown, J.; Brunson, M.; Herrick, J.; Huntsinger, L.; et al. The Western United States Rangelands: A Major Resource. In ASA, CSSA, and SSSA Books; Wedin, W.F., Fales, S.L., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2015; pp. 75–93. ISBN 978-0-89118-194-1. [Google Scholar]
- Holechek, J.L.; Geli, H.M.E.; Cibils, A.F.; Sawalhah, M.N. Climate Change, Rangelands, and Sustainability of Ranching in the Western United States. Sustainability 2020, 12, 4942. [Google Scholar] [CrossRef]
- Reeves, M.C.; Mitchell, J.E. Extent of Coterminous US Rangelands: Quantifying Implications of Differing Agency Perspectives. Rangel. Ecol. Manag. 2011, 64, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Skaggs, R.K. Ecosystem Services and Western U.S. Rangelands. Choices 2008, 23, 37–41. [Google Scholar]
- Mitchell, J.E. Rangeland Resource Trends in the United States: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2000; p. RMRS-GTR-68.
- New Mexico Topo Maps and Outdoor Places to Visit. Available online: https://www.anyplaceamerica.com/directory/nm/ (accessed on 24 November 2019).
- Level III Ecoregions of New Mexico. Available online: https://hort.purdue.edu/newcrop/cropmap/newmexico/maps/NMeco3.html (accessed on 2 July 2020).
- Castetter, E.F. The Vegetation of New Mexico. New Mex. Q. 1956, 26, 16. [Google Scholar]
- Data|Multi-Resolution Land Characteristics (MRLC) Consortium. Available online: https://www.mrlc.gov/data (accessed on 21 September 2019).
- Ecocast Data Drop Directory. Available online: https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (accessed on 5 June 2020).
- USDA. Forest Service FSGeodata Clearinghouse—Rangelands. Available online: https://data.fs.usda.gov/geodata/rastergateway/rangelands/index.php (accessed on 26 August 2020).
- PRISM Climate Group, Oregon State U. Available online: http://www.prism.oregonstate.edu/ (accessed on 29 January 2020).
- WWDT. Available online: https://wrcc.dri.edu/wwdt/time/ (accessed on 19 October 2019).
- NM RGIS|New Mexico Resource Geographic Information System Program. Available online: http://rgis.unm.edu/ (accessed on 21 September 2019).
- Quality Control Introducing the R “Gimms” Package. Available online: https://envin-marburg.gitbooks.io/introducing-the-r-gimms-package/content/chapter04/quality_control.html (accessed on 2 July 2020).
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting Trend and Seasonal Changes in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; de Bruin, S. Detection of breakpoints in global NDVI time series. In Proceedings of the 34th International Symposium on Remote Sensing of Environment (ISRSE), Sydney, Australia, 10–15 April 2011; Available online: https://www.zora.uzh.ch/id/eprint/77356/ (accessed on 18 April 2021).
- Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Grogan, K.; Tian, F.; Huber, S.; Verbesselt, J.; Prince, S.D.; Tucker, C.J.; et al. Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data. In Remote Sensing Time Series; Kuenzer, C., Dech, S., Wagner, W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 22, pp. 183–202. ISBN 978-3-319-15966-9. [Google Scholar]
- Li, X.B.; Li, R.H.; Li, G.Q.; Wang, H.; Li, Z.F.; Li, X.; Hou, X.Y. Human-Induced Vegetation Degradation and Response of Soil Nitrogen Storage in Typical Steppes in Inner Mongolia, China. J. Arid Environ. 2016, 124, 80–90. [Google Scholar] [CrossRef]
- PEOD5/PD005: Sampling the Evidence of Extension Program Impact. Available online: https://edis.ifas.ufl.edu/pd005 (accessed on 16 April 2021).
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley Series in Probability and Mathematical Statistics; Wiley: New York, NY, USA, 1977; ISBN 978-0-471-16240-7. [Google Scholar]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 5 February 2020).
- Welch T-Test: Excellent Reference You Will Love—Datanovia. Available online: https://www.datanovia.com/en/lessons/types-of-t-test/unpaired-t-test/welch-t-test/ (accessed on 31 August 2020).
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated Mapping of Vegetation Trends with Polynomials Using NDVI Imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Van Auken, O.W. Shrub Invasions of North American Semiarid Grasslands. Annu. Rev. Ecol. Syst. 2000, 31, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Browning, D.M.; Maynard, J.J.; Karl, J.W.; Peters, D.C. Breaks in MODIS Time Series Portend Vegetation Change: Verification Using Long-Term Data in an Arid Grassland Ecosystem. Ecol. Appl. 2017, 27, 1677–1693. [Google Scholar] [CrossRef]
- Gedefaw, M.G.; Geli, H.M.E.; Yadav, K.; Zaied, A.J.; Finegold, Y.; Boykin, K.G. A Cloud-Based Evaluation of the National Land Cover Database to Support New Mexico’s Food–Energy–Water Systems. Remote Sens. 2020, 12, 1830. [Google Scholar] [CrossRef]
- Restore New Mexico—ScienceBase-Catalog. Available online: https://www.sciencebase.gov/catalog/item/573cda13e4b0dae0d5e4b15a (accessed on 21 January 2021).
- Loftin, S.R.; Agllilar, R.; Chung, M.C.; Alice, L.; Robbie, W.A. Desert grassland and shrubland ecosystems. In United States Department of Agriculture Forest Service General Technical Report Rm; 1995; pp. 80–94. Available online: https://www.srs.fs.usda.gov/pubs/38859 (accessed on 16 April 2021).
- Sawalhah, M.N.; Holechek, J.L.; Cibils, A.F.; Geli, H.M.E.; Zaied, A. Rangeland Livestock Production in Relation to Climate and Vegetation Trends in New Mexico. Rangel. Ecol. Manag. 2019, 72, 832–845. [Google Scholar] [CrossRef]
- Johnson, L.E.; Geli, H.M.E.; Hayes, M.J.; Smith, K.H. Building an Improved Drought Climatology Using Updated Drought Tools: A New Mexico Food-Energy-Water (FEW) Systems Focus. Front. Clim. 2020, 2. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. Carbon Dioxide and the Uneasy Interactions of Trees and Savannah Grasses. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 601–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.C.D.; Ashcroft, N. New Mexico Range Plants. 48. Available online: https://aces.nmsu.edu/pubs/_circulars/CR374/ (accessed on 18 April 2021).
- Gremer, J.R.; Bradford, J.B.; Munson, S.M.; Duniway, M.C. Desert Grassland Responses to Climate and Soil Moisture Suggest Divergent Vulnerabilities across the Southwestern United States. Glob. Chang. Biol. 2015, 21, 4049–4062. [Google Scholar] [CrossRef] [Green Version]
- Bestelmeyer, B.T.; Peters, D.P.C.; Archer, S.R.; Browning, D.M.; Okin, G.S.; Schooley, R.L.; Webb, N.P. The Grassland–Shrubland Regime Shift in the Southwestern United States: Misconceptions and Their Implications for Management. BioScience 2018, 68, 678–690. [Google Scholar] [CrossRef] [Green Version]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; van Dijk, A.I.J.M.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced Streamflow in Water-Stressed Climates Consistent with CO2 Effects on Vegetation. Nat. Clim. Chang. 2016, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Donohue, I.; Garcia Molinos, J. Impacts of Increased Sediment Loads on the Ecology of Lakes. Biol. Rev. 2009, 84, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Mangold, J.; Monaco, T.; Sheley, R.; Sosebee, R.; Svejcar, T. Invasive Rangeland Plants. In Range and Animal Sciences and Resources Management, Vol. II; ©Encyclopedia of Life Support Systems (EOLSS), 2010; Available online: https://www.eolss.net/sample-chapters/C10/E5-35-21.pdf (accessed on 18 April 2021).
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of Shrub Encroachment on Ecosystem Structure and Functioning: Towards a Global Synthesis: Synthesizing Shrub Encroachment Effects. Ecol. Lett. 2011, 14, 709–722. [Google Scholar] [CrossRef]
- Peters, D.P.C. Recruitment Potential of Two Perennial Grasses with Different Growth Forms at a Semiarid-Arid Transition Zone. Am. J. Bot. 2002, 89, 1616–1623. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management; European Union: Luxembourg, 2018; ISBN 978-92-79-75350-3. [Google Scholar]
- Powell, J.C. Rangelands of southwest New Mexico—An upside view. Rangelands 1992, 14, 265–268. [Google Scholar]
- Schwalm, C.R.; Anderegg, W.R.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A. Global Patterns of Drought Recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef]
- Preparedness Bureau Mitigation|NM Department of Homeland Security & Emergency. Available online: https://www.nmdhsem.org (accessed on 16 April 2021).
- Lotsch, A. Response of Terrestrial Ecosystems to Recent Northern Hemispheric Drought. Geophys. Res. Lett. 2005, 32, L06705. [Google Scholar] [CrossRef] [Green Version]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem Resilience despite Large-Scale Altered Hydroclimatic Conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Snyman, H.A. Estimating the Short-Term Impact of Fire on Rangeland Productivity in a Semi-Arid Climate of South Africa. J. Arid Environ. 2004, 59, 685–697. [Google Scholar] [CrossRef]
- Reeves, M.C.; Baggett, L.S. A Remote Sensing Protocol for Identifying Rangelands with Degraded Productive Capacity. Ecol. Indic. 2014, 43, 172–182. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate Change and North American Rangelands: Trends, Projections, and Implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Direction of Change | Significance | Description |
---|---|---|---|
I1 | Slope > 0 | p < 0.01 | Pixels with significant increasing trend of residual at four classes of p levels (0.01, 0.025, 0.05 and 0.1) |
I2 | 0.01 ≤ p < 0.025 | ||
I3 | 0.025 ≤ p < 0.05 | ||
INC | 0.05 ≤ p < 0.1 | ||
DI | Slope < 0 | p < 0.01 | Pixels with significant decreasing trend of residual at four classes of p levels (0.01, 0.025, 0.05 and 0.1) |
D2 | 0.01 ≤ p < 0.025 | ||
D3 | 0.025 ≤ p < 0.05 | ||
DNC | 0.05 ≤ p < 0.1 | ||
NSC | p ≥ 0.1 | No significant change in productivity |
Method | Direction of Change (% Relative to 4454 Pixels) | Total | ||||
---|---|---|---|---|---|---|
Deceasing | Increasing | NSC * | Agriculture | Indeterminant | ||
TSS-RESTREND | 17.6 | 12.8 | 55.6 | 3.2 | 10.8 | 100 |
Method of Change Detection | Decreasing | Increasing | NSC | Total |
---|---|---|---|---|
RESTREND | 8.5 | 4.6 | 54.8 | 67.9 |
Segmented RESTREND | 4.3 | 2.5 | 0.0 | 6.8 |
Segmented VPR | 4.9 | 5.7 | 0.8 | 11.4 |
Total | 17.6 | 12.8 | 55.6 | 86.1 |
Ecoregion | Insignificant Difference | Significant Difference | Total | ||
---|---|---|---|---|---|
Decrease | Increase | Decrease | Increase | ||
Arizona/New Mexico Mountains | 2 | 0.5 | 0 | 3 | 5.5 |
Arizona/New Mexico Plateau | 5 | 0.5 | 6 | 15 | 26.5 |
Chihuahua Desert | 1 | 35 | 13 | 0 | 49 |
Southwest Tablelands | 1 | 0 | 18 | 0 | 19 |
Total | 9 | 36 | 37 | 18 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedefaw, M.G.; Geli, H.M.E.; Abera, T.A. Assessment of Rangeland Degradation in New Mexico Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sens. 2021, 13, 1618. https://doi.org/10.3390/rs13091618
Gedefaw MG, Geli HME, Abera TA. Assessment of Rangeland Degradation in New Mexico Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sensing. 2021; 13(9):1618. https://doi.org/10.3390/rs13091618
Chicago/Turabian StyleGedefaw, Melakeneh G., Hatim M. E. Geli, and Temesgen Alemayehu Abera. 2021. "Assessment of Rangeland Degradation in New Mexico Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND)" Remote Sensing 13, no. 9: 1618. https://doi.org/10.3390/rs13091618
APA StyleGedefaw, M. G., Geli, H. M. E., & Abera, T. A. (2021). Assessment of Rangeland Degradation in New Mexico Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sensing, 13(9), 1618. https://doi.org/10.3390/rs13091618