Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Datasets
2.2.1. Ground Data
2.2.2. Satellite and Ancillary Data
2.3. Methodology
2.3.1. Time Series Data Processing
2.3.2. Detection of Crop Planting Dates, Harvesting Dates, and Crop Growth Period
2.4. Evaluation and Trend Analysis
3. Results
3.1. Evaluation of Simulated Crop Phenology
3.1.1. State-Level Evaluation
3.1.2. County-Level Evaluation
3.2. Spatial Distribution of Crop Phenology
3.3. Changing Trends of Crop Phenology
3.4. Trends of Climatic Factors and Its Correlation with Crop Phenology
3.5. Trends of Crop Yield and Its Correlation with Crop Phenology
4. Discussion
4.1. Comparisons of Remote Sensing-Based Crop Phenology with Other Studies
4.2. Spatial-Temporal Trends of Crop Phenology
4.3. Effects of Climate Change and Other Factors on Crop Phenology
4.4. Effects of Crop Phenological Shift on Crop Yield
4.5. Uncertainty and Expectations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodges, T. Predicting Crop Phenology; Crc Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Anwar, M.R.; Liu, D.L.; Farquharson, R.; Macadam, I.; Abadi, A.; Finlayson, J.; Wang, B.; Ramilan, T. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 2015, 133-144. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, X.; Yu, Y.; Gao, F.; Yang, Z. Real-Time Monitoring of Crop Phenology in the Midwestern United States Using VIIRS Observations. Remote Sens. 2018, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Magagi, R.; Goïta, K.; Trudel, M.; McNairn, H.; Powers, J. Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm. Remote Sens. Environ. 2019, 231, 111234. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Shen, F.; Zhou, C.; Zhu, A.X.; Gao, B.; Chen, Z.; Li, M. Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data. Soil Tillage Res. 2020, 196, 104465. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Wu, D.; Wang, P.; Jiang, C.; Yang, J.; Huo, Z.; Yu, Q. Measured Phenology Response of Unchanged Crop Varieties to Long-Term Historical Climate Change. Int. J. Plant Prod. 2018, 13, 47–58. [Google Scholar] [CrossRef]
- Fuhrer, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric. Ecosyst. Environ. 2003, 97, 1–20. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, Y.; Bai, H.; Hu, Y.; Cao, J. Impacts of climate warming and crop management on maize phenology in northern China. J. Arid Land. 2019, 11, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Ahmad, S.; Ahmad, A.; Nasim, W.; Fatima, Z.; Hussain, S.; Rehman, M.H.U.; Khan, M.A.; Hasanuzzaman, M.; Fahad, S.; et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 2017, 247, 42–55. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Shi, W.; Zhang, S.; Tao, F.; Ge, Q. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J. Geogr. Sci. 2017, 27, 1085–1099. [Google Scholar] [CrossRef]
- Sacks, W.J.; Kucharik, C.J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric. For. Meteorol. 2011, 151, 882–894. [Google Scholar] [CrossRef]
- He, L.; Jin, N.; Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 2020, 707, 135638. [Google Scholar] [CrossRef] [PubMed]
- Jagadish, S.V.K.; Bahuguna, R.N.; Djanaguiraman, M.; Gamuyao, R.; Prasad, P.V.V.; Craufurd, P.Q. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Front. Plant Sci. 2016, 7, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.J.; McCarl, B.A. Climate change influences on crop mix shifts in the United States. Sci. Rep. 2017, 7, 40845. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Ren, W.; Tao, B.; Sun, G.; Chappelka, A.; Wang, X.; Pan, S.; Yang, J.; Liu, J.S.; Felzer, B.M.; et al. Climate extremes and ozone pollution: A growing threat to China’s food security. Ecosyst. Health Sustain. 2016, 2, e01203. [Google Scholar] [CrossRef] [Green Version]
- Estrella, N.; Sparks, T.H.; Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Chang. Biol. 2007, 13, 1737–1747. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, S.; Zhang, Z.; Rotter, R.P. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob. Chang. Biol. 2014, 20, 3686–3699. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Donatelli, M.; Rosenzweig, C.; Stockle, C.O. Effects of climate change and elevated CO2 on cropping systems: Model predictions at two Italian locations. Eur. J. Agron. 2000, 13, 179–189. [Google Scholar] [CrossRef]
- Menzel, A. Phenology: Its importance to the global change community. Clim. Chang. 2002, 54, 379–385. [Google Scholar] [CrossRef]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Lobell, D.B. Remote sensing assessment of regional yield losses due to sub-optimal planting dates and fallow period weed management. Field Crops Res. 2007, 101, 80–87. [Google Scholar] [CrossRef]
- De Castro, A.; Six, J.; Plant, R.; Peña, J. Mapping Crop Calendar Events and Phenology-Related Metrics at the Parcel Level by Object-Based Image Analysis (OBIA) of MODIS-NDVI Time-Series: A Case Study in Central California. Remote Sens. 2018, 10, 1745. [Google Scholar] [CrossRef] [Green Version]
- Kotsuki, S.; Tanaka, K. SACRA—a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI. Hydrol. Earth Syst. Sci. 2015, 19, 4441–4461. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Nie, Y.; Watene, C.; Zhu, J.; Liu, F. Phenological Observations on Classical Prehistoric Sites in the Middle and Lower Reaches of the Yellow River Based on Landsat NDVI Time Series. Remote Sens. 2017, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method. Remote Sens. 2019, 11, 2725. [Google Scholar] [CrossRef] [Green Version]
- Gil-Alana, L.A.; Sauci, L. US temperatures: Time trends and persistence. Int. J. Climatol. 2019, 39, 5091–5103. [Google Scholar] [CrossRef]
- Kucharik, C.J. A Multidecadal Trend of Earlier Corn Planting in the Central USA. J. Agron. 2006, 98, 1544–1550. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Griffis, T.J.; Baker, J.; Wood, J.D.; Xiao, K. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. J. Geophys. Res. Biogeosci. 2015, 120, 310–325. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Thompson, J.A.; Paull, D.J. Assessing spatial and temporal patterns in land surface phenology for the Australian Alps (2000–2014). Remote Sens. Environ. 2017, 199, 1–13. [Google Scholar] [CrossRef]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, 3rd ed.; ORNL DAAC: Oak Ridge, TN, USA, 2014. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA Special Publication: Greenbelt, MD, USA, 1974. [Google Scholar]
- Zhou, J.; Jia, L.; Menenti, M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sens. Environ. 2015, 163, 217–228. [Google Scholar] [CrossRef]
- Ren, J.; Campbell, J.B.; Shao, Y. Estimation of SOS and EOS for Midwestern US Corn and Soybean Crops. Remote Sens. 2017, 9, 722. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Conrad, C.; Doktor, D. Optimising Phenological Metrics Extraction for Different Crop Types in Germany Using the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. 2017, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Li, L.; Friedl, M.A.; Xin, Q.; Gray, J.; Pan, Y.; Frolking, S. Mapping Crop Cycles in China Using MODIS-EVI Time Series. Remote Sens. 2014, 6, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Alcaraz-Segura, D.; Chuvieco, E.; Epstein, H.E.; Kasischke, E.S.; Trishchenko, A. Debating the greening vs. browning of the North American boreal forest: Differences between satellite datasets. Glob. Chang. Biol. 2010, 16, 760–770. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.S.; Byrne, P.; Cassman, K.G.; Cooper, M.; Delmer, D.; Greene, T.; Gruis, F.; Habben, J.; Hausmann, N.; Kenny, N.; et al. The US drought of 2012 in perspective: A call to action. Glob. Food Sec. 2013, 2, 139–143. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. Int. J. Remote Sens. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, X. Phenological Changes of Corn and Soybeans over U.S. by Bayesian Change-Point Model. Sustainability 2015, 7, 6781–6803. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruin, J.L.; Pedersen, P. Soybean seed yield response to planting date and seeding rate in the Upper Midwest. J. Agron. 2008, 100, 696–703. [Google Scholar] [CrossRef]
- Egli, D.B. Soybean yield trends from 1972 to 2003 in mid-western USA. Field Crops Res. 2008, 106, 53–59. [Google Scholar] [CrossRef]
- Nguyen-Sy, T.; Cheng, W.; Tawaraya, K.; Sugawara, K.; Kobayashi, K. Impacts of climatic and varietal changes on phenology and yield components in rice production in Shonai region of Yamagata Prefecture, Northeast Japan for 36 years. Plant Prod. Sci. 2019, 22, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Popp, M.P.; Oliver, L.R.; Dillon, C.R.; Keisling, T.C.; Manning, P.M. Evaluation of seedbed preparation, planting method, and herbicide alternatives for dryland soybean production. Agron. J. 2000, 92, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Lithourgidis, A.S.; Tsatsarelis, C.A.; Dhima, K.V. Tillage effects on corn emergence, silage yield, and labor and fuel inputs in double cropping with wheat. Crop Sci. 2005, 45, 2523–2528. [Google Scholar] [CrossRef]
- Du, X.; Feng, H.; Hennessy, D.A. Rationality of Choices in Subsidized Crop Insurance Markets. Am. J. Agric. Econ. 2016, 99, 732–756. [Google Scholar] [CrossRef] [Green Version]
- Knott, C.; Herbek, J.; James, J. Early Planting Dates Maximize Soybean Yield in Kentucky. Crop Forage Turfgrass Manag. 2019, 5, 1–6. [Google Scholar] [CrossRef]
Datasets Sources | Crop Types | Scales | Periods | Information |
---|---|---|---|---|
Crop progress report | Corn/soybean | State | 2004–2018 | Planting/harvesting dates |
Kentucky Hybrid Corn Performance Test | Corn | County | 2000–2018 | Planting/harvesting dates |
Kentucky Soybean Variety Performance Trials | Soybean | County | 2000–2018 | Planting/harvesting dates |
Quick Stats (NASS) | Corn/soybean | State | 2000–2018 | Yields |
Phenology Descriptions | Heading Dates | Planting Dates | Harvesting Dates |
---|---|---|---|
The Peak (DOY) of NDVI Time Series | The Peak (DOY) of the 2nd Derivative | The Peak (DOY) of the 2nd Derivative | |
Corn: 2000–2004 | [143, 254] | [106, 143] | [254, 320] |
Corn: 2005–2009 | [152, 249] | [101, 152] | [249, 314] |
Corn: 2010–2014 | [161, 251] | [100, 161] | [251, 319] |
Corn: 2015–2019 | [151, 248] | [98, 151] | [248, 301] |
Time ranges | [143, 254] | [98, 161] | [248, 320] |
Soybean: 2000–2004 | [172, 262] | [113, 172] | [262, 313] |
Soybean: 2005–2009 | [179, 261] | [121, 179] | [261, 305] |
Soybean: 2010–2014 | [183, 265] | [112, 183] | [265, 332] |
Soybean: 2015–2019 | [179, 261] | [125, 179] | [261, 302] |
Time ranges | [172, 265] | [112, 183] | [261, 332] |
Seasons | Tmax | Tmin | Tavg | Prec | ||||
---|---|---|---|---|---|---|---|---|
Trends (°C/year) | r | Trends (°C/year) | r | Trends (°C/year) | r | Trends (mm/year) | r | |
Spring | −0.01 | −0.05 | 0.03 | 0.16 | 0.01 | 0.05 | 3.58 | 0.21 |
Summer | −0.001 | −0.003 | 0.04 | 0.28 | 0.02 | 0.13 | 5.40 | 0.41 |
Fall | −0.01 | −0.03 | 0.04 | 0.22 | 0.02 | 0.09 | 0.64 | 0.04 |
Apr–Oct | 0.01 | 0.08 | 0.05 * | 0.54 | 0.03 | 0.31 | 8.41 | 0.32 |
Climate Variables in Individual Seasons | Planting Dates | Climate Variables in Individual Seasons | Harvesting Dates | Climate Variables in Individual Seasons | Growing Season Length | |||
---|---|---|---|---|---|---|---|---|
r | Response (days/°C; days/mm) | r | Response (days/°C; days/mm) | r | Response (days/°C; days/mm) | |||
Tmax in Spring | −0.56 * | −3.95 | Tmax in Spring | −0.53 * | −4.77 | Tmax in Spring | −0.11 | −0.82 |
Tmin in Spring | −0.33 | −2.64 | Tmin in Spring | −0.27 | −2.83 | Tmin in Spring | −0.02 | −0.19 |
Tavg in Spring | −0.48 * | −3.70 | Tavg in Spring | −0.43 | −4.30 | Tavg in Spring | −0.07 | −0.60 |
Prec in Spring | 0.56 * | 0.05 | Prec in Spring | 0.20 | 0.02 | Prec in Spring | −0.28 | −0.02 |
Tmax in Summer | −0.72 * | −7.20 | Tmax in Summer | −0.46 * | −3.86 | |||
Tmin in Summer | −0.47 * | −6.18 | Tmin in Summer | −0.38 | −4.24 | |||
Tavg in Summer | −0.67 * | −8.26 | Tavg in Summer | −0.47 * | −4.84 | |||
Prec in Summer | 0.45 | 0.06 | Prec in Summer | 0.33 | 0.04 | |||
Tmax in Fall | −0.47 * | −3.73 | Tmax in Fall | −0.27 | −1.81 | |||
Tmin in Fall | −0.20 | −2.05 | Tmin in Fall | −0.09 | −0.77 | |||
Tavg in Fall | −0.41 | −4.32 | Tavg in Fall | −0.22 | −1.98 | |||
Prec in Fall | 0.10 | 0.01 | Prec in Fall | 0.07 | 0.01 | |||
Tmax in Apr–Oct | −0.77 * | −9.94 | Tmax in Apr–Oct | −0.39 | −4.30 | |||
Tmin in Apr–Oct | −0.36 | −6.84 | Tmin in Apr–Oct | −0.16 | −2.47 | |||
Tavg in Apr–Oct | −0.69 * | −12.19 | Tavg in Apr–Oct | −0.34 | −5.06 | |||
Prec in Apr–Oct | 0.47 * | 0.03 | Prec in Apr–Oct | 0.17 | 0.01 |
Climate Variables in Individual Seasons | Planting Dates | Climate Variables in Individual Seasons | Harvesting Dates | Climate Variables in Individual Seasons | Growing Season Length | |||
---|---|---|---|---|---|---|---|---|
r | Response (days/°C; days/mm) | r | Response (days/°C; days/mm) | r | Response (days/°C; days/mm) | |||
Tmax in Spring | −0.34 | −1.71 | Tmax in Spring | −0.35 | −2.84 | Tmax in Spring | −0.15 | −1.13 |
Tmin in Spring | −0.11 | −0.64 | Tmin in Spring | −0.23 | −2.10 | Tmin in Spring | −0.17 | −1.46 |
Tavg in Spring | −0.25 | −1.37 | Tavg in Spring | −0.30 | −2.76 | Tavg in Spring | −0.16 | −1.39 |
Prec in Spring | 0.49* | 0.03 | Prec in Spring | 0.11 | 0.01 | Prec in Spring | −0.20 | −0.02 |
Tmax in Summer | −0.67 * | −5.93 | Tmax in Summer | −0.35 | −2.93 | |||
Tmin in Summer | −0.48 * | −5.59 | Tmin in Summer | −0.37 | −4.05 | |||
Tavg in Summer | −0.64 * | −7.03 | Tavg in Summer | −0.39 | −4.04 | |||
Prec in Summer | 0.24 | 0.03 | Prec in Summer | −0.03 | −0.003 | |||
Tmax in Fall | −0.65 * | −4.65 | Tmax in Fall | −0.55 * | −3.68 | |||
Tmin in Fall | −0.09 | −0.82 | Tmin in Fall | −0.08 | −0.73 | |||
Tavg in Fall | −0.47 * | −4.50 | Tavg in Fall | −0.41 | −3.60 | |||
Prec in Fall | 0.52 * | 0.05 | Prec in Fall | 0.54 * | 0.05 | |||
Tmax in Apr-Oct | −0.69 * | −8.00 | Tmax in Apr-Oct | −0.38 | −4.09 | |||
Tmin in Apr-Oct | −0.23 | −3.92 | Tmin in Apr-Oct | −0.14 | −2.24 | |||
Tavg in Apr-Oct | −0.58 * | −9.11 | Tavg in Apr-Oct | −0.32 | −4.77 | |||
Prec in Apr-Oct | 0.49 * | 0.03 | Prec in Apr-Oct | 0.21 | 0.01 |
Crop Phenology | r | Trends (Bu/acre per day) |
---|---|---|
Corn planting dates | 0.15 | 0.42 |
Corn harvesting dates | 0.70 * | 1.37 |
Corn growing period | 0.71 * | 1.67 |
Soybean planting dates | 0.38 | 0.48 |
Soybean harvesting dates | 0.51 * | 0.39 |
Soybean growing period | 0.30 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Tao, B.; Liang, L.; Huang, Y.; Matocha, C.; Lee, C.D.; Sama, M.; Masri, B.E.; Ren, W. Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky. Remote Sens. 2021, 13, 1615. https://doi.org/10.3390/rs13091615
Yang Y, Tao B, Liang L, Huang Y, Matocha C, Lee CD, Sama M, Masri BE, Ren W. Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky. Remote Sensing. 2021; 13(9):1615. https://doi.org/10.3390/rs13091615
Chicago/Turabian StyleYang, Yanjun, Bo Tao, Liang Liang, Yawen Huang, Chris Matocha, Chad D. Lee, Michael Sama, Bassil El Masri, and Wei Ren. 2021. "Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky" Remote Sensing 13, no. 9: 1615. https://doi.org/10.3390/rs13091615
APA StyleYang, Y., Tao, B., Liang, L., Huang, Y., Matocha, C., Lee, C. D., Sama, M., Masri, B. E., & Ren, W. (2021). Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky. Remote Sensing, 13(9), 1615. https://doi.org/10.3390/rs13091615