Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Surface Water and Ocean Topography (SWOT) Mission Irregular Orbit Cycle
2.2. Assessing the Drainage Area Ratio Method
2.3. Data and Study Region
2.4. Application Using Simulated SWOT Data
3. Results
3.1. Criteria for Using the Drainage Area Ratio Method
3.2. SWOT Time Series Expansion Application
4. Discussion
4.1. Drainage Area Ratio Method Criteria
4.2. Kling-Gupta Efficiency (KGE) Limitations
4.3. Other Possible Issues with the Main Assumption
4.4. SWOT Time Series Expansion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavelsky, T.M.; Durand, M.T.; Andreadis, K.M.; Beighley, R.E.; Paiva, R.C.D.; Allen, G.H.; Miller, Z.F. Assessing the potential global extent of SWOT river discharge observations. J. Hydrol. 2014, 519, 1516–1525. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2016, 37, 307–337. [Google Scholar] [CrossRef] [Green Version]
- Nickles, C.; Beighley, E.; Zhao, Y.; Durand, M.; David, C.; Lee, H. How Does the Unique Space-Time Sampling of the SWOT Mission Influence River Discharge Series Characteristics? Geophys. Res. Lett. 2019, 46, 8154–8161. [Google Scholar] [CrossRef]
- Frasson, R.P.d.M.; Schumann, G.J.-P.; Kettner, A.J.; Brakenridge, G.R.; Krajewski, W.F. Will the Surface Water and Ocean Topography (SWOT) satellite mission observe floods? Geophys. Res. Lett. 2019, 46, 10435–10445. [Google Scholar] [CrossRef] [Green Version]
- Gleason, C.J.; Durand, M.T. Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sens. 2020, 12, 1107. [Google Scholar] [CrossRef] [Green Version]
- Razavi, T.; Coulibaly, P. Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods. J. Hydrol. Eng. 2013, 18, 958–975. [Google Scholar] [CrossRef]
- Du, T.L.T.; Lee, H.; Bui, D.D.; Arheimer, B.; Li, H.-Y.; Olsson, J.; Darby, S.E.; Sheffield, J.; Kim, D.; Hwang, E. Streamflow prediction in “geopolitically ungauged” basins using satellite observations and regionalization at subcontinental scale. J. Hydrol. 2020, 588, 125016. [Google Scholar] [CrossRef]
- Kansakar, P.; Hossain, F. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy 2016, 36, 46–54. [Google Scholar] [CrossRef]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang. 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Forsee, W.J.; Ahmad, S. Evaluating Urban Storm-Water Infrastructure Design in Response to Projected Climate Change. J. Hydrol. Eng. 2011, 16, 865–873. [Google Scholar] [CrossRef]
- Soumya, S.; Ajay, K.; Sajjad, A. Pacific Ocean SST and Z500 climate variability and western U.S. seasonal streamflow. Int. J. Climatol. 2016, 36, 1515–1533. [Google Scholar] [CrossRef]
- Feng, D.; Beighley, E. Identifying uncertainties in hydrologic fluxes and seasonality from hydrologic model components for climate change impact assessments. Hydrol. Earth Syst. Sci. 2020, 24, 2253–2267. [Google Scholar] [CrossRef]
- Teutschbein, C.; Grabs, T.; Laudon, H.; Karlsen, R.H.; Bishop, K. Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. J. Hydrol. 2018, 561, 160–178. [Google Scholar] [CrossRef]
- Galster, J.C.; Pazzaglia, F.J.; Hargreaves, B.R.; Morris, D.P.; Peters, S.C.; Weisman, R.N. Effects of urbanization on watershed hydrology: The scaling of discharge with drainage area. Geology 2006, 34, 713–716. [Google Scholar] [CrossRef]
- Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S. Flood trends and river engineering on the Mississippi River system. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Troch, P.A. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. J. Des Sci. Hydrol. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Zhang, L.; Wang, Z. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review. Wires Water 2021, 8, e1487. [Google Scholar] [CrossRef]
- E Silva, R.d.S.; Blanco, C.J.C.; Pessoa, F.C.L. Alternative for the regionalization of flow duration curves. J. Appl. Water Eng. Res. 2019, 7, 198–206. [Google Scholar] [CrossRef]
- Waseem, M.; Ajmal, M.; Kim, T.-W. Ensemble hydrological prediction of streamflow percentile at ungauged basins in Pakistan. J. Hydrol. 2015, 525, 130–137. [Google Scholar] [CrossRef]
- Arsenault, R.; Brissette, F. Analysis of continuous streamflow regionalization methods within a virtual setting. Hydrol. Sci. J. 2016, 61, 2680–2693. [Google Scholar] [CrossRef]
- Arsenault, R.; Breton-Dufour, M.; Poulin, A.; Dallaire, G.; Romero-Lopez, R. Streamflow prediction in ungauged basins: Analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrol. Sci. J. 2019, 64, 1297–1311. [Google Scholar] [CrossRef]
- McCuen, R.H.; Levy, B.S. Evaluation of Peak Discharge Transposition. J. Hydrol. Eng. 2000, 5, 278–289. [Google Scholar] [CrossRef]
- Stagnitta, T.J.; Kroll, C.N.; Zhang, Z. A comparison of methods for low streamflow estimation from spot measurements. Hydrol. Process. 2018, 32, 480–492. [Google Scholar] [CrossRef]
- Lima, C.H.R.; Lall, U. Spatial scaling in a changing climate: A hierarchical bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J. Hydrol. 2010, 383, 307–318. [Google Scholar] [CrossRef]
- Archfield, S.A.; Vogel, R.M. Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mantilla, R.; Troutman, B.M.; Dawdy, D.; Krajewski, W.F. Generalizing a nonlinear geophysical flood theory to medium-sized river networks. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Betterle, A.; Schirmer, M.; Botter, G. Flow dynamics at the continental scale: Streamflow correlation and hydrological similarity. Hydrol. Process. 2019, 33, 627–646. [Google Scholar] [CrossRef] [Green Version]
- Razavi, T.; Coulibaly, P. Improving streamflow estimation in ungauged basins using a multi-modelling approach. Hydrol. Sci. J. 2016, 61, 2668–2679. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Andreadis, K.M.; Margulis, S.A.; Lettenmaier, D.P. A Data Assimilation Framework for Generating Space-Time Continuous Daily SWOT River Discharge Data Products. Water Resour. Res. 2020, 56, e2019WR026999. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Y.; Shu, K.; Wan, D.; Yu, Y.; Zhou, X.; Liu, H. Joint Spatial and Temporal Modeling for Hydrological Prediction. IEEE Access 2020, 8, 78492–78503. [Google Scholar] [CrossRef]
- Hirsch, R.M. An evaluation of some record reconstruction techniques. Water Resour. Res. 1979, 15, 1781–1790. [Google Scholar] [CrossRef]
- Moglen, G.E.; Beighley, R.E. Using GIS to Determine Extent of Gauged Streams in a Region. J. Hydrol. Eng. 2000, 5, 190–196. [Google Scholar] [CrossRef]
- Andréassian, V.; Lerat, J.; Le Moine, N.; Perrin, C. Neighbors: Nature’s own hydrological models. J. Hydrol. 2012, 414–415, 49–58. [Google Scholar] [CrossRef]
- Karlsen, R.H.; Seibert, J.; Grabs, T.; Laudon, H.; Blomkvist, P.; Bishop, K. The assumption of uniform specific discharge: Unsafe at any time? Hydrol. Process. 2016, 30, 3978–3988. [Google Scholar] [CrossRef] [Green Version]
- Asquith, W.H.; Roussel, M.C.; Vrabel, J. Statewide Analysis of the Drainage-Area Ratio Method for 34 Streamflow percentile Ranges in Texas; Scientific Investigations Report 2006–5286. Available online: http://pubs.er.usgs.gov/publication/sir20065286 (accessed on 22 February 2021).
- Liu, C.; Zhang, Z.; Balay, J.W. Evaluation of Reference Gages for Passby Flow Determinations and Monitoring in the Susquehanna River Basin; 2017; Publication No. 305. Available online: https://www.srbc.net/our-work/reports-library/technical-reports/305-reference-gages-passby/docs/evaluation-reference-gages-passby-flow.pdf (accessed on 15 March 2021).
- Hortness, J.E. Estimating Low-Flow Frequency Statistics for Unregulated Streams in Idaho; Scientific Investigations Report 2006–5035. Available online: https://pubs.water.usgs.gov/sir20065035 (accessed on 17 January 2021).
- Ries Iii, K.G.; Friesz, P.J. Methods for Estimating Low-Flow Statistics for Massachusetts Streams; Water-Resources Investigations Report 2000–4135. Available online: http://pubs.er.usgs.gov/publication/wri004135 (accessed on 15 March 2021).
- Gianfagna, C.C.; Johnson, C.E.; Chandler, D.G.; Hofmann, C. Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York. J. Hydrol. Reg. Stud. 2015, 4, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Kayembe, A.; Mitchell, C.P.J. Determination of subcatchment and watershed boundaries in a complex and highly urbanized landscape. Hydrol. Process. 2018, 32, 2845–2855. [Google Scholar] [CrossRef]
- Whittemore, A.; Ross, M.R.V.; Dolan, W.; Langhorst, T.; Yang, X.; Pawar, S.; Jorissen, M.; Lawton, E.; Januchowski-Hartley, S.; Pavelsky, T. A Participatory Science Approach to Expanding Instream Infrastructure Inventories. Earth’s Future 2020, 8, e2020EF001558. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, M.W.; Gleason, C.J.; Durand, M.T. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height. Water Resour. Res. 2017, 53, 9692–9707. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Subcounty Resident Population Estimates: 1 April 2010 to 1 July 2016. 2010. Available online: https://www2.census.gov/programs-surveys/popest/datasets/2010-2016/cities/totals/ (accessed on 15 March 2021).
- Lin, P.; Pan, M.; Beck, H.E.; Yang, Y.; Yamazaki, D.; Frasson, R.; David, C.; Durand, M.; Pavelsky, T.M.; Allen, G.; et al. Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches. Water Resour. Res. 2019, 55, 6499–6516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MCD12C1.006 (accessed on 19 February 2021).
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Veizer, J. Water and carbon cycles in the Mississippi River basin: Potential implications for the Northern Hemisphere residual terrestrial sink. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Nickles, C.; Beighley, E. Expanding SWOT discharge series using the drainage area ratio method [Data set]. HydroShare 2021. [Google Scholar] [CrossRef]
- Webster, V.L.; Stedinger, J.R. Flood Frequency Analysis in the United States. Stat. Anal. Hydrol. Var. 2019, 233–268. [Google Scholar] [CrossRef]
- Nickles, C.; Beighley, E.; Feng, D. The Applicability of SWOT’s Non-Uniform Space–Time Sampling in Hydrologic Model Calibration. Remote Sens. 2020, 12, 3241. [Google Scholar] [CrossRef]
- Centre National d’Etudes Spatiales. SWOT Orbit: Ground Track and Swath Files. 2018. Available online: https://www.aviso.altimetry.fr/en/missions/future-missions/swot/orbit.html (accessed on 18 May 2018).
- DePhilip, M.; Moberg, T. Ecosystem Flow Recommendations for the Susquehanna River Basin. 2010. Available online: https://www.srbc.net/regulatory/policies-guidance/docs/ecosytem-flow-recommendations-susquehanna-basin-tnc.pdf (accessed on 22 February 2021).
- Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R. On the choice of calibration metrics for “high-flow” estimation using hydrologic models. Hydrol. Earth Syst. Sci. 2019, 23, 2601–2614. [Google Scholar] [CrossRef] [Green Version]
- Oudin, L.; Kay, A.; Andréassian, V.; Perrin, C. Are seemingly physically similar catchments truly hydrologically similar? Water Resour. Res. 2010, 46, W11558. [Google Scholar] [CrossRef]
- Teutschbein, C.; Grabs, T.; Karlsen, R.H.; Laudon, H.; Bishop, K. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. Water Resour. Res. 2015, 51, 9425–9446. [Google Scholar] [CrossRef] [Green Version]
- Ishitsuka, Y.; Gleason, C.J.; Hagemann, M.W.; Beighley, E.; Allen, G.H.; Feng, D.; Lin, P.; Pan, M.; Andreadis, K.; Pavelsky, T.M. Combining Optical Remote Sensing, McFLI Discharge Estimation, Global Hydrologic Modeling, and Data Assimilation to Improve Daily Discharge Estimates Across an Entire Large Watershed. Water Resour. Res. 2021, 57, e2020WR027794. [Google Scholar] [CrossRef]
- Emery, C.M.; David, C.H.; Andreadis, K.M.; Turmon, M.J.; Reager, J.T.; Hobbs, J.M.; Pan, M.; Famiglietti, J.S.; Beighley, E.; Rodell, M. Underlying Fundamentals of Kalman Filtering for River Network Modeling. J. Hydrometeorol. 2020, 21, 453–474. [Google Scholar] [CrossRef]
- Fisher, C.K.; Pan, M.; Wood, E.F. Spatiotemporal assimilation–interpolation of discharge records through inverse streamflow routing. Hydrol. Earth Syst. Sci. 2020, 24, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lin, P.; Fisher, C.K.; Turmon, M.; Hobbs, J.; Emery, C.M.; Reager, J.T.; David, C.; Li, H.; Yang, K.; et al. Enhancing SWOT discharge assimilation through spatiotemporal correlations. Remote Sens. Environ. 2019, 234, 111450. [Google Scholar] [CrossRef]
Comparison | KGE Q5 | KGE Q25 | KGE Q50 | KGE Q75 | KGE Q95 | % Pass KS Test | % Pass t Test |
---|---|---|---|---|---|---|---|
Qg vs. Qgs | 0.94 | 0.97 | 0.98 | 0.98 | 0.88 | 100 | 90 |
Qg vs. Qgs,e | 0.92 | 0.96 | 0.98 | 0.99 | 0.96 | 60 | 65 |
Qg vs. Qgs,e* | 0.97 | 0.98 | 0.99 | 0.98 | 0.94 | 98 | 99 |
Qg vs. Qs | 0.63 | 0.72 | 0.78 | 0.81 | 0.81 | 91 | 67 |
Qg vs. Qs,e | 0.54 | 0.69 | 0.78 | 0.84 | 0.88 | 51 | 46 |
Qg vs. Qs,e* | 0.61 | 0.70 | 0.77 | 0.82 | 0.87 | 83 | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nickles, C.; Beighley, E. Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin. Remote Sens. 2021, 13, 1590. https://doi.org/10.3390/rs13081590
Nickles C, Beighley E. Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin. Remote Sensing. 2021; 13(8):1590. https://doi.org/10.3390/rs13081590
Chicago/Turabian StyleNickles, Cassandra, and Edward Beighley. 2021. "Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin" Remote Sensing 13, no. 8: 1590. https://doi.org/10.3390/rs13081590
APA StyleNickles, C., & Beighley, E. (2021). Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin. Remote Sensing, 13(8), 1590. https://doi.org/10.3390/rs13081590