Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Classification Approach
2.2.1. Yearly Landsat and Sentinel-2 Mosaics
2.2.2. Landsat and Sentinel-2 Data Processing
2.3. Urban Dynamics Metrics
3. Results
3.1. Spatial Dynamic of Urban Sprawl
3.2. Characterization of the Urban Fabric
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moroke, T.; Schoeman, C.; Schoeman, I. Developing a neighbourhood sustainability assessment model: An approach to sustainable urban development. Sustain. Cities Soc. 2019, 48, 101433. [Google Scholar] [CrossRef]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Shi, L.; Yigitcanlar, T. Integrating strategic environmental assessment and material flow accounting: A novel approach for moving towards sustainable urban futures. Int. J. Life Cycle Assess 2019, 24, 1269–1284. [Google Scholar] [CrossRef]
- Rovai, M.; Zetti, I.; Lucchesi, F.; Rossi, M.; Andreoli, M. Peri-urban Open Spaces and Sustainable Urban Development Between Value and Consumption. In Values and Functions for Future Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 249–265. [Google Scholar]
- Friis, C.; Nielsen, J.Ø. Global Land-Use Change through a Telecoupling Lens: An Introduction. In Telecoupling; Springer: Cham, Switzerland, 2019; pp. 1–15. [Google Scholar]
- Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 2019, 14, 843–856. [Google Scholar] [CrossRef]
- Rivera, M. Political criteria for Sustainable Development Goal (SDG) selection and the role of the urban dimension. Sustainability 2013, 5, 5034–5051. [Google Scholar] [CrossRef] [Green Version]
- Acuto, M.; Parnell, S.; Seto, K.C. Building a global urban science. Nat. Sustain. 2018, 1, 2–4. [Google Scholar] [CrossRef]
- Caprotti, F.; Cowley, R.; Datta, A.; Broto, V.C.; Gao, E.; Georgeson, L.; Herrick, C.; Odendaal, N.; Joss, S. The New Urban Agenda: Key opportunities and challenges for policy and practice. Urban Res. Pract. 2017, 10, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Escobedo, F.J.; Clerici, N.; de la Barrera, F.; Eleuterio, A.A.; MacGregor-Fors, I.; Reyes-Paecke, S.; Vásquez, A.; Camaño, J.D.Z.; Hernández, H.J. Urban ecosystem Services in Latin America: Mismatch between global concepts and regional realities? Urban Ecosyst. 2019, 22, 173–187. [Google Scholar] [CrossRef]
- Sefair, J.A.; Espinosa, M.; Behrentz, E.; Medaglia, A.L. Optimization model for urban air quality policy design: A case study in Latin America. Comput. Environ. Urban Syst. 2019, 78, 101385. [Google Scholar] [CrossRef]
- Espindola, G.M.; Carneiro, E.L.N.C.; Façanha, A.C. Four decades of urban sprawl and population growth in Teresina, Brazil. Appl. Geogr. 2017, 79, 73–83. [Google Scholar] [CrossRef]
- Almazroui, M.; Mashat, A.; Assiri, M.E.; Butt, M.J. Application of landsat data for urban growth monitoring in Jeddah. Earth Syst. Environ. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Saini, V.; Tiwari, R.K. Remote sensing based time-series analysis for monitoring urban sprawl: A case study of Chandigarh capital region. J Geom. 2019, 13, 94–97. [Google Scholar]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Lu, Y.; Coops, N.C.; Hermosilla, T. Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data. Isprs J. Photogramm. Remote Sens. 2017, 126, 11–23. [Google Scholar] [CrossRef]
- Song, X.-P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Mendili, L.E.; Puissant, A.; Chougrad, M.; Sebari, I. Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images. Remote Sens. 2020, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Iannelli, G.C.; Gamba, P. Jointly exploiting Sentinel-1 and Sentinel-2 for urban mapping. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8209–8212. [Google Scholar]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the added-value of Sentinel-2 for detecting built-up areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Bhat, P.A.; ul Shafiq, M.; Mir, A.A.; Ahmed, P. Urban sprawl and its impact on landuse/land cover dynamics of Dehradun City, India. Int. J. Sustain. Built Environ. 2017, 6, 513–521. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Chen, F.; Jia, H.; Liang, D.; Yang, A. Feature Comparison and Optimization for 30-M Winter Wheat Mapping Based on Landsat-8 and Sentinel-2 Data Using Random Forest Algorithm. Remote Sens. 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Castriota, R.; Tonucci, J. Extended urbanization in and from Brazil. Environ. Plan. D Soc. Space 2018, 36, 512–528. [Google Scholar] [CrossRef]
- Chauvin, J.P.; Glaeser, E.; Ma, Y.; Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 2017, 98, 17–49. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, L.L.F.; Espindola, G.M.; Carneiro, E.L.N.C. Análise da ocupação urbana na zona Centro-Norte de Teresina: Considerações sobre a região do Encontro dos Rios. Rev. Equador 2016, 5, 25–42. [Google Scholar]
- Gonzalez, E.L.; Chinelli, C.K.; Azevedo Guedes, A.L.; Vazquez, E.G.; Hammad, A.W.; Haddad, A.N.; Pereira Soares, C.A. Smart and sustainable cities: The main guidelines of City Statute for increasing the intelligence of Brazilian cities. Sustainability 2020, 12, 1025. [Google Scholar]
- De Freitas Rocha, A.T.; Mira de Espindola, G.; Araujo Soares, M.R.; de Ribamar de Sousa Rocha, J.; Nery Costa, C.H. Visceral leishmaniasis and vulnerability conditions in an endemic urban area of Northeastern Brazil. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Júnior, P.A.; Espindola, G.M.; Carneiro, E.L.N.C. Cartografias do Piauí: Relacionando infraestrutura e desenvolvimento social. Rev. Geogr. Acad. 2016, 10, 56–68. [Google Scholar]
- Rosa, M.R. Classificação do Padrão de Ocupação Urbana de São Paulo Utilizando Aprendizagem de Máquina e Sentinel 2. Rev. Dep. Geogr. 2018, 15–21. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, W.; Ganguly, S.; Nemani, R.R. Radiometric Characteristics of the Landsat Collection 1 Dataset. Adv. Remote Sens. 2018, 7, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Li, S.; Ganguly, S.; Dungan, J.L.; Wang, W.; Nemani, R.R. Sentinel-2 MSI radiometric characterization and cross-calibration with Landsat-8 OLI. Adv. Remote Sens. 2017, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Fehrmann, L.; Soares, C.P.B.; Jacovine, L.A.G.; Kleinn, C.; de Oliveira Gaspar, R. Above-and belowground biomass in a Brazilian Cerrado. For. Ecol. Manag. 2011, 262, 491–499. [Google Scholar] [CrossRef]
- Bonini, I.; Marimon-Junior, B.H.; Matricardi, E.; Phillips, O.; Petter, F.; Oliveira, B.; Marimon, B.S. Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. For. Ecol. Manag. 2018, 414, 64–73. [Google Scholar] [CrossRef]
- Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agric. Ecosyst. Environ. 2010, 137, 47–58. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Weng, Q.; Zheng, Q.; Li, L.; Dai, S.; Guo, B. Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Sci. Total Environ. 2019, 666, 274–284. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review. Remote Sens. Rev. 2001, 20, 227–255. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F.; de Barros Santiago, D.; de Oliveira-Júnior, J.F.; da Silva Junior, C.A. Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, Brazil. Land Use Policy 2019, 87, 104026. [Google Scholar] [CrossRef]
- Rahman, M.T. Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. Isprs Int. J. Geo-Inf. 2016, 5, 15. [Google Scholar] [CrossRef]
- Lu, L.; Guo, H.; Corbane, C.; Li, Q. Urban sprawl in provincial capital cities in China: Evidence from multi-temporal urban land products using Landsat data. Sci. Bull. 2019, 64, 955–957. [Google Scholar] [CrossRef] [Green Version]
- Mohammady, S.; Delavar, M.R. Urban sprawl assessment and modeling using landsat images and GIS. Model. Earth Syst. Environ. 2016, 2, 155. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Kienast, F.; Psomas, A. Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecol. Indic. 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Benedetti, A.; Picchiani, M.; Del Frate, F. Sentinel-1 and sentinel-2 data fusion for urban change detection. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1962–1965. [Google Scholar]
- Loret, E.; Martino, L.; Fea, M.; Sarti, F. Enhanced urban sprawl monitoring over the Entire District of Rome through joint analysis of ALOS AVNIR-2 and SENTINEL-2A data. Adv. Remote Sens. 2017, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Rahar, P.S.; Pal, M. Comparison of Various Indices to Differentiate Built-up and Bare Soil with Sentinel 2 Data. In Applications of Geomatics in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 501–509. [Google Scholar]
- Bolay, J.-C.; Rabinovich, A. Intermediate cities in Latin America risk and opportunities of coherent urban development. Cities 2004, 21, 407–421. [Google Scholar] [CrossRef] [Green Version]
- Henríquez, C.; Azócar, G.; Romero, H. Monitoring and modeling the urban growth of two mid-sized Chilean cities. Habitat Int. 2006, 30, 945–964. [Google Scholar] [CrossRef]
- Da Mata, D.; Deichmann, U.; Henderson, V.J.; Lall, S.V.; Wang, H.G. Examining the Growth Patterns of Brazilian Cities; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Ferguson, B.W. Inducing local growth: Two intermediate-sized cities in the state of Parana, Brazil. Third World Plan. Rev. 1992, 14, 245. [Google Scholar] [CrossRef]
- Sridhar, K.S.; Wan, G. Firm location choice in cities: Evidence from China, India, and Brazil. China Econ. Rev. 2010, 21, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. J. Environ. Manag. 2013, 115, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.R.; Ramírez, M.I. The Role of Planning Policies in Promoting Urban Sprawl in Intermediate Cities: Evidence from Chile. Sustainability 2019, 11, 7165. [Google Scholar] [CrossRef] [Green Version]
- Monkkonen, P.; Comandon, A.; Escamilla, J.A.M.; Guerra, E. Urban sprawl and the growing geographic scale of segregation in Mexico, 1990–2010. Habitat Int. 2018, 73, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lu, X.X.; Sellers, J.M. A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landsc. Urban Plan. 2007, 82, 184–197. [Google Scholar] [CrossRef]
- Alencar, P.G.d.; de Espindola, G.M.; da Costa Carneiro, E.L.N. Dwarf cashew crop expansion in the Brazilian semiarid region: Assessing policy alternatives in Pio IX, Piauí. Land Use Policy 2018, 79, 1–9. [Google Scholar] [CrossRef]
- Machado, A.L.M.; Maraschin, C. Urban segregation and socio-spatial interactions: A configurational approach. Urban Sci. 2018, 2, 55. [Google Scholar]
- Lopes, L.; Motte-Baumvol, B.; Thévenin, T. Urban Mobility and the Spatial Distribution of Economic Activities in Rio de Janeiro (Brazil). The European Colloquium on Theoretical and Quantitative Geography (ECTQG). 2017. Available online: https://hal.archives-ouvertes.fr/hal-01744913/ (accessed on 15 February 2021).
Characteristics | Teresina | Timon |
---|---|---|
Brazilian state | Piauí (PI) | Maranhão (MA) |
Population estimated in 2019 | 864,845 inhabitants | 169,107 inhabitants |
Population surveyed in 2010 | 814,230 inhabitants | 155,460 inhabitants |
Urban population in 2010 | 80.54% | 71.15% |
Population density in 2010 | 584.94 persons per km2 | 89.18 persons per km2 |
Total area | 1391.046 km2 | 1764.612 km2 |
Human Development Index (HDI) in 2010 | 0.751 | 0.649 |
Wastewater sanitation network | 61.6% | 38.0% |
Thematic Classes for Landsat (I) | Quantities of Sample Data |
Urban area | 1463 |
Bare soil | 1484 |
Agriculture or pasture | 1249 |
Water | 1495 |
Savanna | 1495 |
Forest | 1441 |
Thematic Classes for Sentinel-2 (II) | Quantities of Sample Data |
Residential—Ceramic roofs | 1457 |
Residential—Other roofs | 1459 |
Impervious surfaces | 1386 |
Bare soil | 1484 |
Water | 1495 |
Natural vegetation (Savanna and Forest) | 1492 |
Sensor/Satellite | Filtered Collection | Spatial Resolution |
---|---|---|
TM Landsat-5 (L5) | 1985 to 2011 | 30 m |
ETM+ Landsat-7 (L7) | 2012 | 30 m |
OLI Landsat-8 (L8) | 2013 to 2018 | 30 m |
MSI Sentinel-2 (S2) | 2019 | 10 m |
MSI Sentinel-2 (S2) | 2019 | 20 m (Band 11 only) |
Input Variable | Meaning/Formula |
---|---|
Blue band | Band 1 (L5 and L7); Band 2 (L8); Band 2 (S2) |
Green band | Band 2 (L5 and L7); Band 3 (L8); Band 3 (S2) |
Red band | Band 3 (L5 and L7); Band 4 (L8); Band 4 (S2) |
Near-infrared (NIR) band | Band 4 (L5 and L7); Band 5 (L8); Band 8 (S2) |
Short-wave infrared (SWIR1) band | Band 5 (L5 and L7); Band 6 (L8); Band 11 (S2) |
Short-wave infrared (SWIR2) band | Band 7 (L5, L7, and L8) |
Normalized Difference Vegetation Index (NDVI) | |
Enhanced Vegetation Index 2 (EVI2) | |
Normalized Difference Built-Up Index (NDBI) | |
Shuttle Radar Topography Mission (SRTM) | Slope (in degrees) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, E.; Lopes, W.; Espindola, G. Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil. Remote Sens. 2021, 13, 1338. https://doi.org/10.3390/rs13071338
Carneiro E, Lopes W, Espindola G. Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil. Remote Sensing. 2021; 13(7):1338. https://doi.org/10.3390/rs13071338
Chicago/Turabian StyleCarneiro, Eduilson, Wilza Lopes, and Giovana Espindola. 2021. "Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil" Remote Sensing 13, no. 7: 1338. https://doi.org/10.3390/rs13071338
APA StyleCarneiro, E., Lopes, W., & Espindola, G. (2021). Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil. Remote Sensing, 13(7), 1338. https://doi.org/10.3390/rs13071338