Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model
Abstract
:1. Introduction
2. RF Aerosol Classification Model
2.1. Description of Model
2.2. Training and Validation of the RF Model
3. Variable Importance and Data Volume for the Satellite Input Variable
4. Results
4.1. Assessment of the New RF-Based Model
4.2. Spatial Distributions among DIfferent Aerosol Classification Models
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bréon, F.M.; Goloub, P. Cloud droplet effective radius from spaceborne polarization measurements. Geophys. Res. Lett. 1998, 25, 1879–1882. [Google Scholar] [CrossRef]
- Chen, Q.; Yuan, Y.; Huang, X.; He, Z.; Tan, H. Assessment of column aerosol optical properties using ground-based sun-photometer at urban Harbin, Northeast China. J. Environ. Sci. 2018, 74, 50–57. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mao, Q.; Huang, C.; Zhang, H.; Chen, Q.; Yuan, Y. Aerosol optical properties and radiative effect under different weather conditions in Harbin, China. Infrared Phys. Technol. 2018, 89, 304–314. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.; Hales, J.; Cess, R.D.; Coakley, J.J.; Hansen, J.; Hofmann, D. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef]
- Christopher, S.A.; Zhang, J. Daytime variation of shortwave direct radiative forcing of biomass burning aerosols from GOES-8 imager. J. Atmos. Sci. 2002, 59, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Procopio, A.S.; Artaxo, P.; Kaufman, Y.J.; Remer, L.A.; Schafer, J.S.; Holben, B.N. Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate. Geophys. Res. Lett. 2004, 31, L03108. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
- Higurashi, A.; Nakajima, T. Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys. Res. Lett. 2002, 29, 17-11–17-14. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Kambezidis, H. Comparison of the Ångström parameters retrieval in different spectral ranges with the use of different techniques. Meteorol. Atmos. Phys. 2008, 99, 233–246. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Technol. 2013, 6, 3257–3270. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.J.; Li, Z. Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer. J. Geophys. Res. Atmos. 2005, 110, D10S08. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.; Lee, H.C.; Higurashi, A.; Takemura, T.; Song, C.H. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign. J. Geophys. Res. Atmos. 2007, 112, D22S33. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Lee, H.C.; Takemura, T. Classification of aerosol type from MODIS and OMI over East Asia. Asia-Pac. J. Atmos. Sci. 2007, 43, 343–357. [Google Scholar]
- Mao, Q.; Huang, C.; Chen, Q.; Zhang, H.; Yuan, Y. Satellite-based identification of aerosol particle species using a 2D-space aerosol classification model. Atmos. Environ. 2019, 219, 117057. [Google Scholar] [CrossRef]
- Penning de Vries, M.; Beirle, S.; Hörmann, C.; Kaiser, J.; Stammes, P.; Tilstra, L.; Wagner, T. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances. Atmos. Chem. Phys. 2015, 15, 10597–10618. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Young, S.A.; Winker, D.M.; Powell, K.A.; Omar, A.H.; Liu, Z.; Hu, Y.; Hostetler, C.A. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. In Laser radar techniques for atmospheric sensing. Int. Soc. Opt. Photonics 2004, 5575, 16–30. [Google Scholar]
- Chu, D.; Kaufman, Y.; Ichoku, C.; Remer, L.; Tanré, D.; Holben, B. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 2002, 29, MOD2-1–MOD2-4. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Ge, J.; Huang, J. Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin. Sci. Bull. 2013, 58, 2497–2506. [Google Scholar] [CrossRef] [Green Version]
- Thrastarson, H.T.; Manning, E.; Kahn, B.; Fetzer, E.; Yue, Q.; Wong, S.; Kalmus, P.; Payne, V.; Olsen, E. AIRS/AMSU/HSB Version 7 Level 2 Product User Guide; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2020; pp. 83–92. [Google Scholar]
- Papagiannopoulos, N.; Mona, L.; Alados-Arboledas, L.; Amiridis, V.; Baars, H.; Binietoglou, I.; Bortoli, D.; D’Amico, G.; Giunta, A.; Guerrero-Rascado, J.L.; et al. CALIPSO climatological products: Evaluation and suggestions from EARLINET. Atmos. Chem. Phys. 2016, 16, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Choi, W.; Lee, H.; Park, J. A First Approach to Aerosol Classification using Space-Borne Measurement Data: Machine Learning-based Algorithm and Evaluation. Remote Sens. 2021, 13, 609. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-K.; Tesche, M.; Noh, Y.; Müller, D. Aerosol-type classification based on AERONET version 3 inversion products. Atmos. Meas. Technol. 2019, 12, 3789–3803. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K.; Doddridge, B.; Holben, B. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 1997, 278, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Chen, L.; Wang, Z.; Wang, J.; Che, H.; Xu, X.; Wang, W.; Tao, J.; Zhu, H.; Hou, C. Evaluation of MODIS Deep Blue aerosol algorithm in desert region of East Asia: Ground validation and intercomparison. J. Geophys. Res. Atmos. 2017, 122, 10357–10368. [Google Scholar] [CrossRef]
- Wu, S.; Mickley, L.J.; Kaplan, J.; Jacob, D.J. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys. 2012, 12, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liao, H. Impacts of land use and land cover changes on biogenic emissions of volatile organic compounds in China from the late 1980s to the mid-2000s: Implications for tropospheric ozone and secondary organic aerosol. Tellus B 2014, 66, 24987. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carlson, B.E.; Lacis, A.A. Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures. J. Geophys. Res. Atmos. 2015, 120, 2037–2052. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Meloni, D.; Di Sarra, A.; Pace, G.; Monteleone, F. Aerosol optical properties at Lampedusa (Central Mediterranean). 2. Determination of single scattering albedo at two wavelengths for different aerosol types. Atmos. Chem. Phys. 2006, 6, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Sinyuk, A.; Pinker, R.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R.; Tripathi, S.; et al. Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J. Geophys. Res. 2010, 115, D19205. [Google Scholar] [CrossRef] [Green Version]
- Derimian, Y.; Karnieli, A.; Kaufman, Y.J.; Andreae, M.O.; Andreae, T.W.; Dubovik, O.; Maenhaut, W.; Koren, I. The role of iron and black carbon in aerosol light absorption. Atmos. Chem. Phys. 2008, 8, 3623–3637. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Hamill, P.; Giordano, M.; Ward, C.; Giles, D.; Holben, B. An AERONET-based aerosol classification using the Mahalanobis distance. Atmos. Environ. 2016, 140, 213–233. [Google Scholar] [CrossRef]
- Ozdemir, E.; Tuygun, G.T.; Elbir, T. Application of aerosol classification methods based on AERONET version 3 product over eastern Mediterranean and Black Sea. Atmos. Poll. Res. 2020, 11, 2226–2243. [Google Scholar] [CrossRef]
- Stefan, S.; Voinea, S.; Iorga, G. Study of the aerosol optical characteristics over the Romanian Black Sea Coast using AERONET data. Atmos. Poll. Res. 2020, 11, 1165–1178. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Stavroulas, I.; Liakakou, E.; Dumka, U.C.; Dimitriou, K.; Gerasopoulos, E.; Mihalopoulos, N. In situ identification of aerosol types in Athens, Greece, based on long-term optical and on online chemical characterization. Atmos. Environ. 2021, 246, 118070. [Google Scholar] [CrossRef]
Reference | Parameters | Aerosol Types | Validation (or Comparison) |
---|---|---|---|
Higurashi and Nakajima [9] | Spectral radiances in channels 1, 2, 6, and 8 of SeaWiFS (center wavelength: 412, 443, 670, and 865 nm) | Soil dust, carbonaceous, sulfate, and sea salt | - |
Jeong and Li [13] | Aerosol optical thickness and Ångström exponent from AVHRR Aerosol optical thickness and Aerosol index from TOMS | Biomass burning, dust, sea salt, and four mixtures | - |
Kim et al. [14] | Fine mode fraction from MODIS Aerosol index from OMI | Carbonaceous, dust, sulfate, sea salt, and five mixtures | Agreement with aerosol classification from Higurashi and Nakajima [9]: 32–81% |
Lee et al. [15] | Aerosol optical thickness and Ångström exponent from MODIS Aerosol index from OMI | Dust, sea salt, smoke, and sulfate and two mixtures | Comparison with global aerosol climate model |
Torres et al. [12] | Column amount of CO from AIRS Aerosol index from OMI | Desert dust, carbonaceous particles, and sulfate-based aerosols | - |
Penning de Vries et al. [17] | Aerosol optical depth from MODIS Aerosol index, column amounts of NO2, HCHO, SO2 from GOME-2 Column amount of CO from MOPITT | Biomass burning smoke, desert dust, secondary aerosols of biogenic origin, secondary aerosols of urban/industrial origin, aged aerosols, volcanic sulfate, sea salt, unknown source | Comparison with model-derived aerosol compositions from the global monitoring atmospheric composition and climate model. |
Mao et al. [16] | Aerosol relative optical depth from MODIS | Desert dust, continental, sub-continental, urban industry, biomass burning | Agreement with ground-based aerosol type data: 36–91% |
Aerosol Type | Threshold | |
---|---|---|
Pure dust (PD) | 0.89 < Rd | |
dust dominated mixed (DDM) | 0.53 ≤ Rd ≤ 0.89 | |
pollution dominated mixed (PDM) | 0.17 ≤ Rd < 0.53 | |
non-absorbing (NA) | Rd < 0.17 | 0.95 < SSA |
weakly absorbing (WA) | 0.90 < SSA ≤ 0.95 | |
moderately absorbing (MA) | 0.85 ≤ SSA ≤ 0.90 | |
strongly absorbing (SA) | SSA < 0.85 |
Sensor (Mission) | Product (Level) | Variable Name | Variable Importance (MDA) |
---|---|---|---|
TROPOMI (Sentinel-5P) | AI (L2) | Aerosol Index | 83% |
Solar Zenith Angle | 76% | ||
CO (L2) | CO column amount | 70% | |
NO2 (L2) | Tropospheric NO2 column density | 64% | |
MODIS (Aqua) | MYD04 (L2) | Aerosol Optical Depth at 550 nm | 82% |
Ångström Exponent (wavelength pair: 550 nm and 860 nm) | 54% | ||
Deep blue TOA reflectance at 412 nm | 52% | ||
Deep blue TOA reflectance at 470 nm | 49% | ||
Deep blue TOA reflectance at 660 nm | 61% | ||
MCD12C1 (L3) | Land cover type | 61% | |
Percent of urban area | 57% |
Dataset Name | Input Variables | The Number of Data | Overall Accuracy (%) | |||
---|---|---|---|---|---|---|
Total | Training (60%) | Test (40%) | ||||
Choi et al. [25] (11 variables) | TROPOMI | - Aerosol index - Solar zenith angle - CO column amount - Tropospheric NO2 column density | 4906 | 2946 | 1960 | 59% |
MODIS | - Aerosol optical depth (at 550 nm) - Ångström exponent (wavelength pair: 550 nm and 860 nm) - Deep blue TOA reflectance at 412, 470, and 660 nm - Land cover type (annual) - Percent of urban area (annual) | |||||
This study (6 variables) | TROPOMI | - Aerosol index - Solar zenith angle - CO column amount - Tropospheric NO2 column density | 8693 | 5218 | 3475 | 56% |
MODIS | - Land cover type (annual) - Percent of urban area (annual) |
Seven Aerosol Classes (PD, DDM, PDM, SA, MA, WA, and NA) | Four Aerosol Classes (PD, DDM, SA, and NA) | |||
---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |
SSA440 | 0.006 (0.007) | 0.007 (0.006) | 0.003 (0.002) | 0.004 (0.003) |
SSA675 | 0.010 (0.008) | 0.009 (0.009) | 0.005 (0.004) | 0.006 (0.005) |
SSA870 | 0.013 (0.010) | 0.011 (0.011) | 0.007 (0.005) | 0.008 (0.007) |
SSA1020 | 0.015 (0.012) | 0.013 (0.012) | 0.008 (0.006) | 0.009 (0.008) |
FMF | 0.012 (0.027) | 0.014 (0.020) | 0.011 (0.005) | 0.018 (0.006) |
Rd | 0.061 (0.047) | 0.017 (0.016) | 0.027 (0.016) | 0.037 (0.019) |
Overall accuracy | 56% (59%) | 73% (73%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Lee, H.; Kim, D.; Kim, S. Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model. Remote Sens. 2021, 13, 1268. https://doi.org/10.3390/rs13071268
Choi W, Lee H, Kim D, Kim S. Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model. Remote Sensing. 2021; 13(7):1268. https://doi.org/10.3390/rs13071268
Chicago/Turabian StyleChoi, Wonei, Hanlim Lee, Daewon Kim, and Serin Kim. 2021. "Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model" Remote Sensing 13, no. 7: 1268. https://doi.org/10.3390/rs13071268
APA StyleChoi, W., Lee, H., Kim, D., & Kim, S. (2021). Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model. Remote Sensing, 13(7), 1268. https://doi.org/10.3390/rs13071268