Analyzing the Suitability of Remotely Sensed ET for Calibrating a Watershed Model of a Mediterranean Montane Forest
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Summary
3.2. Weather Data
3.3. Flux Tower Observations of ET
3.4. Remote Sensing of ET
3.5. Watershed Modeling of ET
4. Results
4.1. Long-term ET
4.2. Monthly ET
4.3. Seasonality in ET and Weather
4.4. ET-weather Relationships
5. Discussion
5.1. Need to Assess Remotely Sensed ET before Use in Watershed Model Calibration
5.2. Representation of Water Iimitation in Remote Sensing Products
5.3. Regression-Based Correction to Remotely Sensed ET
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abatzoglou, J.T.; Ficklin, D.L. Climatic and Physiographic Controls of Spatial Variability in Surface Water Balance over the Contiguous United States Using the Budyko Relationship. Water Resour. Res. 2017, 53, 7630–7643. [Google Scholar] [CrossRef]
- Caracciolo, D.; Pumo, D.; Viola, F. Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: An Application to United States. Water Resour. Manag. 2018, 32, 3189–3202. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Flint, A.; Huang, C.; Flint, L.; Berry, J.A.; Davis, F.W.; Sperry, J.S.; Field, C.B. Tree Mortality Predicted from Drought-Induced Vascular Damage. Nat. Geosci. 2015, 8, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Mildrexler, D.; Yang, Z.; Cohen, W.B.; Bell, D.M. A Forest Vulnerability Index Based on Drought and High Temperatures. Remote Sens. Environ. 2016, 173, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Young, D.J.N.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-Term Climate and Competition Explain Forest Mortality Patterns under Extreme Drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional Evaporation Estimates from Flux Tower and MODIS Satellite Data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global Estimates of the Land–Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite Based Analysis of Northern ET Trends and Associated Changes in the Regional Water Balance from 1983 to 2005. J. Hydrol. 2009, 379, 92–110. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Wagener, T.; Gupta, H.V. Model Identification for Hydrological Forecasting under Uncertainty. Stoch. Environ. Res. Risk Assess. 2005, 19, 378–387. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Vrugt, J.A.; Gupta, H.V.; Sorooshian, S. Model Calibration in Watershed Hydrology. In Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting; World Scientific: Singapore, 2010; pp. 53–105. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Pan, M.; Beck, H.E.; Yang, Y.; Yamazaki, D.; Frasson, R.; David, C.H.; Durand, M.; Pavelsky, T.M.; Allen, G.H.; et al. Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches. Water Resour. Res. 2019, 55, 6499–6516. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. Landsat Provisional Actual Evapotranspiration Science Product courtesy of the U.S. Geological Survey. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-provisional-actual-evapotranspiration (accessed on 23 November 2020).
- Zhang, Y.; Chiew, F.H.S.; Zhang, L.; Li, H. Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia. J. Hydrometeorol. 2009, 10, 969–980. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiew, F.H.S.; Liu, C.; Tang, Q.; Xia, J.; Tian, J.; Kong, D.; Li, C. Can Remotely Sensed Actual Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions without Runoff Calibration? Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Zou, L.; Zhan, C.; Xia, J.; Wang, T.; Gippel, C.J. Implementation of Evapotranspiration Data Assimilation with Catchment Scale Distributed Hydrological Model via an Ensemble Kalman Filter. J. Hydrol. 2017, 549, 685–702. [Google Scholar] [CrossRef]
- Wambura, F.J.; Dietrich, O.; Lischeid, G. Improving a Distributed Hydrological Model Using Evapotranspiration-Related Boundary Conditions as Additional Constraints in a Data-Scarce River Basin. Hydrol. Process. 2018, 32, 759–775. [Google Scholar] [CrossRef]
- Becker, R.; Koppa, A.; Schulz, S.; Usman, M.; aus der Beek, T.; Schüth, C. Spatially Distributed Model Calibration of a Highly Managed Hydrological System Using Remote Sensing-Derived ET Data. J. Hydrol. 2019, 577, 123944. [Google Scholar] [CrossRef]
- Gui, Z.; Liu, P.; Cheng, L.; Guo, S.; Wang, H.; Zhang, L. Improving Runoff Prediction Using Remotely Sensed Actual Evapotranspiration during Rainless Periods. J. Hydrol. Eng. 2019, 24, 04019050. [Google Scholar] [CrossRef]
- Herman, M.R.; Hernandez-Suarez, J.S.; Nejadhashemi, A.P.; Kropp, I.; Sadeghi, A.M. Evaluation of Multi- and Many-Objective Optimization Techniques to Improve the Performance of a Hydrologic Model Using Evapotranspiration Remote-Sensing Data. J. Hydrol. Eng. 2020, 25, 04020006. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, H.; Tao, J.; Kimball, J.S.; Alfieri, L.; Chen, X. Satellite-Based Evapotranspiration in Hydrological Model Calibration. Remote Sens. 2020, 12, 428. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jin, Y. Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets. Water 2020, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Nesru, M.; Shetty, A.; Nagaraj, M.K. Multi-Variable Calibration of Hydrological Model in the Upper Omo-Gibe Basin, Ethiopia. Acta Geophys. 2020, 68, 537–551. [Google Scholar] [CrossRef]
- Goulden, M.L.; Anderson, R.G.; Bales, R.C.; Kelly, A.E.; Meadows, M.; Winston, G.C. Evapotranspiration along an Elevation Gradient in California’s Sierra Nevada. J. Geophys. Res. Biogeosci. 2012, 117, G03028. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Jones, L.A.; Kimball, J.S.; McDonald, K.C.; Running, S.W. Satellite Assessment of Land Surface Evapotranspiration for the Pan-Arctic Domain. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Martinec, J.; Rango, A. Merits of Statistical Criteria for the Performance of Hydrological Models. J. Am. Water Resour. Assoc. 1989, 25, 421–432. [Google Scholar] [CrossRef]
- McFarland, J.R.; Tufenkjian, C.L. The Kings River Handbook, 5th ed.; Kings River Conservation District and Kings River Water Association: Fresno, CA, USA, 2009; Available online: http://www.krcd.org/_pdf/Kings_River_Handbook_2009.pdf (accessed on 8 August 2018).
- U.S. Geological Survey. National Elevation Dataset (NED) 1 arc-second 2013 1 x 1 degree ArcGrid. Reston, VA. Available online: https://nationalmap.gov/ (accessed on 12 November 2014).
- U.S. Geological Survey. National Hydrography Dataset (NHD) Medium Resolution for California 20140718 State or Territory Shapefile. Reston, VA. Available online: https://nationalmap.gov/ (accessed on 19 February 2016).
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically Sensitive Mapping of Climatological Temperature and Precipitation across the Conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- PRISM Climate Data, Northwest Alliance for Computational Science and Engineering, Oregon State University, Corvallis. Available online: http://prism.oregonstate.edu (accessed on 9 October 2020).
- California Data Exchange Center (CDEC) ; California Department of Water Resources. Monthly Full Natural Streamflow of Kings River at Pine Flat Dam, Station ID KGF. Available online: http://cdec.water.ca.gov/dynamicapp/wsSensorData (accessed on 15 October 2020).
- Hunsaker, C.T.; Whitaker, T.W.; Bales, R.C. Snowmelt Runoff and Water Yield along Elevation and Temperature Gradients in California’s Southern Sierra Nevada. J. Am. Water Resour. Assoc. 2012, 48, 667–678. [Google Scholar] [CrossRef]
- Bales, R.; Stacy, E.; Safeeq, M.; Meng, X.; Meadows, M.; Oroza, C.; Conklin, M.; Glaser, S.; Wagenbrenner, J. Spatially Distributed Water-Balance and Meteorological Data from the Rain–Snow Transition, Southern Sierra Nevada, California. Earth Syst. Sci. Data 2018, 10, 1795–1805. [Google Scholar] [CrossRef] [Green Version]
- Natural Resources Conservation Service; U.S. Department of Agriculture. State Soil Geographic (STATSGO) Data Base: Data Use Information; Miscellaneous Publication Number 1492; Fort Worth, TX, USA. 1994. Available online: http://www.fsl.orst.edu/pnwerc/wrb/metadata/soils/statsgo.pdf (accessed on 11 March 2021).
- Web Site for Official Soil Series Descriptions and Series Classification, Natural Resources Conservation Service, U.S. Department of Agriculture. Available online: https://soilseries.sc.egov.usda.gov (accessed on 8 October 2020).
- Klos, P.Z.; Goulden, M.L.; Riebe, C.S.; Tague, C.L.; O’Geen, A.T.; Flinchum, B.A.; Safeeq, M.; Conklin, M.H.; Hart, S.C.; Berhe, A.A.; et al. Subsurface Plant-Accessible Water in Mountain Ecosystems with a Mediterranean Climate. WIREs Water 2018, 5, e1277. [Google Scholar] [CrossRef] [Green Version]
- O’Geen, A.; Safeeq, M.; Wagenbrenner, J.; Stacy, E.; Hartsough, P.; Devine, S.; Tian, Z.; Ferrell, R.; Goulden, M.; Hopmans, J.W.; et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: A Synthesis of Measurements, New Insights, and Future Directions. Vadose Zone J. 2018, 17, 180081. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. NLCD 2011 Land Cover Conterminous United States. Sioux Falls, SD. Available online: https://www.mrlc.gov/ (accessed on 7 April 2020).
- Bales, R.C.; Hopmans, J.W.; O’Geen, A.T.; Meadows, M.; Hartsough, P.C.; Kirchner, P.; Hunsaker, C.T.; Beaudette, D. Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed-Conifer Forest. Vadose Zone J. 2011, 10, 786–799. [Google Scholar] [CrossRef]
- Data Access Page: Measurement of Energy, Carbon and Water Exchange Along California Climate Gradients, Goulden Lab, Department of Earth System Science, University of California, Irvine. Available online: https://www.ess.uci.edu/~california/ (accessed on 12 December 2019).
- Safeeq, M.; Hunsaker, C.T. Characterizing Runoff and Water Yield for Headwater Catchments in the Southern Sierra Nevada. J. Am. Water Resour. Assoc. 2016, 52, 1327–1346. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Daly, C.; Smith, J.I.; Olson, K.V. Mapping Atmospheric Moisture Climatologies across the Conterminous United States. PLoS ONE 2015, 10, e0141140. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Murray, F.W. On the Computation of Saturation Vapor Pressure. J. Appl. Meteorol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Goulden, M.L.; Munger, J.W.; Fan, S.-M.; Daube, B.C.; Wofsy, S.C. Measurements of Carbon Sequestration by Long-Term Eddy Covariance: Methods and a Critical Evaluation of Accuracy. Glob. Change Biol. 1996, 2, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. Distributed by NASA EOSDIS Land Processes DAAC. 2017. Available online: https://doi.org/10.5067/MODIS/MOD16A2.006 (accessed on 26 August 2019).
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. User’s Guide: MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-End Gap-Filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (For Collection 6); User’s Guide Version 2.1; Land Processes Distributed Active Archive Center (LP DAAC), 2019. Available online: https://lpdaac.usgs.gov/documents/378/MOD16_User_Guide_V6.pdf (accessed on 15 August 2019).
- Jarvis, J.G. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Srinivasan, R.; Arnold, J.G. Integration of a Basin-Scale Water Quality Model with GIS. J. Am. Water Resour. Assoc. 1994, 30, 453–462. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, T.A.; Cruickshank, T.S.; Arnold, J.G.; Hotchkiss, R.H. Development of a Snowfall–Snowmelt Routine for Mountainous Terrain for the Soil Water Assessment Tool (SWAT). J. Hydrol. 2002, 262, 209–223. [Google Scholar] [CrossRef]
- Ahl, R.S.; Woods, S.W.; Zuuring, H.R. Hydrologic Calibration and Validation of SWAT in a Snow-Dominated Rocky Mountain Watershed, Montana, U.S.A. J. Am. Water Resour. Assoc. 2008, 44, 1411–1430. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R.; Debele, B.; Hao, F. Runoff Simulation of the Headwaters of the Yellow River Using the SWAT Model with Three Snowmelt Algorithms. J. Am. Water Resour. Assoc. 2008, 44, 48–61. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE 2013, 8, e71297. [Google Scholar] [CrossRef]
- Watson, B.M.; Putz, G. Comparison of Temperature-Index Snowmelt Models for Use within an Operational Water Quality Model. J. Environ. Qual. 2014, 43, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Grusson, Y.; Sun, X.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Sáchez-Pérez, J.-M. Assessing the Capability of the SWAT Model to Simulate Snow, Snow Melt and Streamflow Dynamics over an Alpine Watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Technical Report 406; Texas Water Resources Institute: College Station, TX, USA, 2011; p. 618. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 11 April 2019).
- Chan, K.; Tarantola, S.; Saltelli, A.; Sobol’, I.M. Variance-Based Methods. In Sensitivity Analysis; Wiley: Chichester, NY, USA, 2000; pp. 167–197. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing Uncertainty Analysis Techniques for a SWAT Application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Porporato, A.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Plants in Water-Controlled Ecosystems: Active Role in Hydrologic Processes and Response to Water Stress: III. Vegetation Water Stress. Adv. Water Resour. 2001, 24, 725–744. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The Increasing Importance of Atmospheric Demand for Ecosystem Water and Carbon Fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef] [Green Version]
- Massmann, A.; Gentine, P.; Lin, C.J. When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration? J. Adv. Model. Earth Syst. 2019, 11, 3305–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Kimball, J.S.; Yi, Y.; Running, S.W.; Guan, K.; Moreno, A.; Wu, X.; Maneta, M. Satellite Data-Driven Modeling of Field Scale Evapotranspiration in Croplands Using the MOD16 Algorithm Framework. Remote Sens. Environ. 2019, 230, 111201. [Google Scholar] [CrossRef]
Site Name (This Paper) | Local Site Name | Elevation (m) | Dominant Vegetation | Latitude (deg) | Longitude (deg) | Data Availability (Water Years) |
---|---|---|---|---|---|---|
Upper | Short Hair Creek | 2700 | Lodgepole pine | 37.0671 | −118.9871 | 2010–2011, 2012 *, 2015 *, 2016–2018 |
Middle | Providence 301 | 2015 | White fir, pine, cedar | 37.0673 | −119.1948 | 2009–2018 |
Lower | Soaproot Saddle | 1160 | Ponderosa pine, oak | 37.0311 | −119.2563 | 2011–2018 |
All years | Wet years | Dry years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site | Product | NSE | PBIAS | N | NSE | PBIAS | N | NSE | PBIAS | N |
Upper | MODIS | −0.56 | −35 | 57 | −0.66 | −32 | 39 | −0.42 | −40 | 18 |
SWAT | +0.68 | −5.4 | 68 | +0.67 | −3.8 | 47 | +0.70 | −9.1 | 21 | |
Corrected MODIS | +0.77 | +1.7 | 57 | +0.78 | +2.2 | 39 | +0.75 | +0.67 | 18 | |
Middle | MODIS | −0.73 | −50 | 104 | −1.0 | −57 | 46 | −0.54 | −43 | 58 |
SWAT | +0.04 | −23 | 120 | −0.04 | −31 | 60 | +0.13 | −15 | 60 | |
Corrected MODIS | +0.69 | −1.5 | 104 | +0.70 | −12 | 46 | +0.64 | +9.3 | 58 | |
Lower | MODIS | −0.33 | −49 | 91 | −0.45 | −53 | 33 | −0.23 | −47 | 58 |
SWAT | +0.41 | −5.3 | 95 | +0.27 | +3.5 | 36 | +0.53 | −10.7 | 59 | |
Corrected MODIS | +0.60 | −1.3 | 91 | +0.63 | −7.0 | 33 | +0.57 | +2.1 | 58 | |
All sites | MODIS | −0.43 | −47 | 252 | −0.56 | −49 | 118 | −0.31 | −44 | 134 |
SWAT | +0.36 | −13 | 283 | +0.27 | −14 | 143 | +0.46 | −12 | 140 | |
Corrected MODIS | +0.67 | −0.89 | 252 | +0.71 | −7.1 | 118 | +0.63 | +4.9 | 134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jepsen, S.M.; Harmon, T.C.; Guan, B. Analyzing the Suitability of Remotely Sensed ET for Calibrating a Watershed Model of a Mediterranean Montane Forest. Remote Sens. 2021, 13, 1258. https://doi.org/10.3390/rs13071258
Jepsen SM, Harmon TC, Guan B. Analyzing the Suitability of Remotely Sensed ET for Calibrating a Watershed Model of a Mediterranean Montane Forest. Remote Sensing. 2021; 13(7):1258. https://doi.org/10.3390/rs13071258
Chicago/Turabian StyleJepsen, Steven M., Thomas C. Harmon, and Bin Guan. 2021. "Analyzing the Suitability of Remotely Sensed ET for Calibrating a Watershed Model of a Mediterranean Montane Forest" Remote Sensing 13, no. 7: 1258. https://doi.org/10.3390/rs13071258