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S1. Construction of base watershed model in ArcSWAT 

 

This section describes inputs and settings of the "base model" constructed in ArcSWAT 2012. 

Spatial datasets for elevation, soil, land use, and weather forcings are listed in supplement Table 

S1. The weather forcings were daily precipitation, minimum and maximum air temperature, 

relative humidity, downward solar radiation, and wind speed. Relative humidity was computed 

using dewpoint temperature, minimum air temperature, and maximum air temperature from the 

PRISM AN81d product (Daly et al., 2008, 2015; PRISM Climate Data) with the equation for 

saturation vapor pressure in Murray (1967). Downward solar radiation and wind speed were 

obtained from the GridMET product (Abatzoglou, 2013; Climatology Lab). Each subbasin of the 

SWAT model (Figure 1) was forced with a separate set of weather variables. These subbasin 

weather variables were obtained by downsampling the original 2.5-arcminute weather datasets 

by a factor of 16 (to ~250-m resolution), masking the downsampled weather data to each 

subbasin, and then calculating daily averages of the masked data. This was done in Python 3.7 

with the packages rasterio, fiona, and shapely. The reference elevation for each set of subbasin 

weather forcings (i.e., the "gage" elevation) was set to the mean elevation of the corresponding 

subbasin. 

 The "critical source area," which defines the minimum drainage area required to form the 

origin of a stream, was set to 5000 ha producing a total of 47 subbasins (Figure 1). Three slope 

classes were defined at uniformly spaced percentile ranges (tertiles) of the slope distribution in 

the watershed digital elevation model (DEM). These slope classes were 0–14.3, 14.3–26.1, and 

greater than 26.1. We selected the option to use multiple Hydrologic Response Units (HRUs) 

per subbasin, and set the associated "threshold areas" to 20% for land use, 10% for soil type, and 

20% for slope class as suggested by Winchell et al. (2013). These settings for critical source area 

and threshold area produced a total of 444 HRUs in the SWAT model.  

 Five equal-area elevation bands per subbasin were defined based on uniformly spaced 

percentile ranges (quintiles) of the elevation distribution in the watershed DEM. This was done 

for each subbasin by first solving for elevations separating the five quintiles of the elevation 

distribution and then evaluating area-weighted mean elevations in each quintile. Computations 

for this were performed in Python 3.7 and resulting values entered manually into ArcSWAT. 
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 Parameter values listed in Table S2 were manually entered into the graphic user interface of 

ArcSWAT. 

 

S2. Watershed model initialization with LAI and biomass of mature forest  

 

The HRUs of the base model from ArcSWAT had been configured with default "scheduled 

management operations" consisting of yearly "planting" and "harvest/kill" operations of the land 

cover to emulate cropping operations (Arnold et al., 2012 a). Using a series of Python 3.7 scripts, 

we replaced these scheduled management operations with continous growth conditions of a 

mature forest. To make this change, we first deleted the lines at the end of the SWAT input 

*.mgt files defining the yearly planting and harvest/kill operations. We then set values of five 

parameters in the "Initial Plant Growth Parameters" section near the beginning of the SWAT 

input *.mgt files, as follows. The first parameter, IGRO, is the land cover status code. We set 

IGRO to 1 to simulate a land cover growing at the beginning of a simulation. The second 

parameter, PLANT_ID, is the HRU land cover identification number. We set PLANT_ID to the 

value queried from the PLANT_ID field of the mgt2 table of the ArcSWAT project database (p. 

386 in Winchell et al., 2013). We applied this query to an SQLite version of the ArcSWAT 

project database, originally provided as a Microsoft Access file in ArcSWAT, using the Python 

sqlite3 module. The third parameter, PHU_PLT, is the total number of heat units or growing 

degree days needed to bring a plant to maturity. We set PHU_PLT to the value queried from the 

HEATUNITS field of the mgt2 table of the ArcSWAT project database (SQLite version) (p. 386 

in Winchell et al., 2013). The fourth and fifth parameters are LAI_INIT, initial leaf area index 

(LAI), and BIO_INIT, initial dry weight biomass (kg/ha). We set these equal to the final monthly 

outputs from a spin-up simulation of the base model to steady state conditions. This spin-up 

consisted of a SWAT simulation of the base model forced by dynamic steady-state weather 

conditions, consisting of daily averages of weather data from PRISM and GridMET during 

2000–2019 (supplement Table S1), until LAI and biomass reached equilibrium. After some 

experimentation (supplement Figure S5), we decided to apply 30 years of steady state spin-up in 

order to bring LAI and biomass to approximate equilibrium. 

 After replacing the scheduled management operations in each HRU with continous growth 

conditions of a mature forest, as described above, we modified some of the SWAT biophysical 
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parameters of the land covers to more closely reflect the forested conditions of the upper Kings 

River watershed (see supplement Table S3). After doing this, the SWAT model was referred to 

as the "plant spin-up model." 

 

S3. Sensitivity analysis of influential watershed model parameters 

 

We conducted a global sensitivity analysis to identify the most influential SWAT parameters to 

subsequently estimate via calibration. The most influential parameters were defined to be the set 

of parameters accounting for 99% of total modeled variance in calibration objective, defined to 

be the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) of monthly streamflow. For the 

sensitivity analysis, we used the Sobol method which decomposes the total variance of the model 

objective into contributions from individual parameters (Saltelli et al., 2000). For this, we used 

the Python SALib package (Herman and Usher, 2017) for parameter sampling and sensitivity 

analysis, and the run batch file of the SWAT-CUP package with parallel processing license for 

carrying out the necessary SWAT simulations (Abbaspour et al., 2007; Yang et al., 2008; 

Rouholahnejad et al., 2012). 

 The first step in the sensitivity analysis was to select a set of possibly influential SWAT 

parameters and their ranges to be sampled in the Sobol method. Using the literature, known 

controls on evapotranspiration, and previous experience in the neighboring upper San Joaquin 

River (Jepsen et al., 2018), we selected 26 SWAT model parameters and ranges over which to 

sample them (Table S4). For the response function of the sensitivity analysis, as well as the 

objective function of calibration (section S4), we eventually selected the Kling-Gupta efficiency 

(KGE) (Gupta et al., 2009) of monthly modeled streamflow at the watershed outlet. This 

selection was made after first trying the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 

1970) for sensitivity analysis response and calibration objective. However, this objective 

function for calibration resulted in unacceptably high values of model percent streamflow bias 

(PBIAS) (≥ 15%) (Moriasi et al., 2007), even though NSE-values were good (≥ 0.9). 

 The required number of SWAT simulations for the Sobol sensitivity analysis, which we 

configured to include first-order but not second-order interaction effects, is given by N*(D + 2) 

where N is the sample size and D is the number of parameters, equal to 26. We used a sample 

size (N) of 1000 because it produced a 95% confidence interval equal to approximately 10% of 
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the leading total-order (sensitivity) index, as suggested by Herman and Usher (2017). These 

settings required a total of 1000*(26 + 2) = 28,000 SWAT simulations. These simulations took 

approximately 84 hours to completele on a 3.4 GHz Windows 7 PC running 6 processes in 

parallel. 

 The results of the sensitivity analysis sorted by total order (TO) index are shown in Table 

S5. When all TO indices are normalized such that they sum to unity, the TO index of a particular 

parameter gives that parameter's fractional contribution to the total modeled KGE-variance. The 

cumulative sum of ranked and normalized TO indices then gives the cumulative fraction of total 

modeled KGE-variance accounted for by parameters of equal or greater influence (as quantified 

by TO index). This cumulative sum is shown in column "Cumulative variance accounted for" of 

Table S5. The results in this column show that 12 SWAT parameters, shaded in gray in Table S5, 

accounted for over 99% of the total modeled KGE-variance. These 12 parameters were selected 

as the set of parameters to estimate via calibration, described in the next section.  

 

S4. Watershed model calibration and validation 

 

We calibrated the SWAT watershed model using the SUFI-2 (Sequential Uncertainty FItting 

Ver. 2) method with SWAT-CUP software (Arnold et al., 2012 b). We also used the add-on 

parallel processing license purchased from Neprash Technology in 2016 (Rouholahnejad et al., 

2012). As put by Santhi et al. (2001), calibration in SWAT should involve some small 

adjustments to parameters that we have more physical knowledge of, and more substantial 

adjustments to other parameters of a more empirical and less physical nature. One of the aims of 

the SUFI-2 method is to obtain calibrated ranges of a user specified set of parameters (i.e., 

"calibrate" the model) that give ranges in model predictions bracketing as many observations as 

possible. The observations in this study are monthly stream discharge. The width of the range in 

model predictions gives the uncertainty in the model, as quantified by the "r-factor" (Yang et al., 

2008). The fraction of observations bracketed by the range in model predictions is referred to as 

the "p-factor" (Abbaspour et al., 2004, 2007). The p-factor can be interpreted as the fraction of 

observations explained by the model given all sources of uncertainty. For a more technical 

description of the SUFI-2 method, the reader is referred to Abbaspour et al. (2004, 2007) and 

Yang et al. (2008). 
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 To implement SUFI-2, the user first supplies a list of parameters, their initial ranges, and the 

mathematical form (definition) of the objective function. The user then manually applies several 

iterations of simulations until achieving an r-factor of less than approximately 1. Each iteration 

consists of a set of N simulations (N = 1000 in this study) that randomly sample parameters over 

a latin hypercube. A final calibrated model with a p-factor of ≥ 0.8 and r-factor ≤ 1.0 can be 

considered satisfactory (Abbaspour et al., 2004, 2007). In addition, the single simulation 

providing the highest objective function value ("best simulation") should conform to the 

performance criteria given in Moriasi et al. (2007) and Abbaspour et al. (2004, 2007). 

 For the objective function of calibration, we selected the Kling-Gupta efficiency (KGE) 

(Gupta et al., 2009) of monthly modeled streamflow, using for observations full natural flows at 

the watershed outlet (CDEC, 2020 b). We first tried using the Nash-Sutcliffe efficiency (NSE) 

(Nash and Sutcliffe, 1970) as the objective function but obtained unacceptably high values of 

percent streamflow bias (PBIAS) (≥ 15%) (Moriasi et al., 2007), even though NSE-values were 

good (≥ 0.9). We then switched objective functions to KGE and obtained acceptable values of 

both NSE and PBIAS according to the performance criteria in Moriasi et al. (2007). 

 In calibrating the SWAT model, we sought to estimate values of parameters having the most 

influence on the objective function, KGE. To identify the set of the most influential parameters, 

we conducted the global sensitivity analysis described in section S3. Based on results of that 

analysis, we selected for calibration the 12 parameters accounting for approximately 99% of total 

variance in modeled KGE. These parameters are listed in the gray-shaded rows of Table S5. 

 Two sets of parameter ranges are needed for SUFI-2, intial ranges and absolute ranges. 

Initial ranges are the ranges input to SUFI-2 for the first iteration of simulations. Subsequent 

iterations of SUFI-2 produce shifts in parameter ranges depending on two things: parameter 

values of the simulation producing the highest objective, termed the "best" simulation, and the 

diagonal elements of the parameter covariance matrix (Abbaspour et al., 2004). Because of this 

shift in parameter range between successive SUFI-2 iterations, absolute minimum and maximum 

limits of parameter ranges, termed "absolute ranges," were defined for each parameter based on 

either physical plausibility or the literature for parameters of a more empirical nature. We set 

these absolute ranges equal to the ranges sampled in the sensitivity analysis (Table S4), with the 

following exception. The upper limit of the absolute range for REVAPMN, which controls the 

"revap" component of evapotranspiration, was lowered from 3000 to 2000 mm. This change was 
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made to increase availability of water in the shallow aquifer for uptake by deep-rooted plants 

(Neitsch et al., 2011), providing needed increases in modeled ET during calibration. The 

absolute ranges are listed in the "Absolute range" columns of Table S6. After some trial and 

error, we determined the other set of parameter ranges, initial ranges, as follows. We centered the 

initial ranges on the parameter values producing the highest KGE-value of the sensitivity 

analysis (section S3). These parameters are listed in the "Best parameter (highest KGE)" column 

of Table S5 and the "Initial range, center" column of Table S6. We also needed the widths of the 

intial ranges, defined as maximum − minimum values, to completely define the initial ranges. 

We set these widths equal to two-thirds of the width of the absolute ranges of parameters. Based 

on previous experience, we have found that the factor of two-thirds works well by allowing the 

bounds of the parameter ranges some room to shift during successive SUFI-2 iterations. The 

initial ranges are listed in the "Initial range" columns of Table S6. We'd like to add a final note 

on the centering of initial ranges. During preliminary calibration work, we centered the initial 

ranges on the centers of absolute ranges and set widths of initial ranges to two-thirds of the 

widths of absolute ranges. This method resulted in SUFI-2 "missing" the best simulations 

occurring near the limits of the absolute ranges. This became apparent after examining the 

highest objective function values of the global sensitivity analysis (section S3). We then decided 

to center the initial ranges on the parameter values producing the highest KGE-value of the 

sensitivity analysis, as earlier in this paragraph.  

 The simulation period for model calibration was calendar years 2003–2010, and the 

simulation period for model validation (i.e., model testing) was calendar years 2011–2019. For 

both calibration and validation, we applied a 13-calendar year spin-up (warm-up) forced by 10 

years of dynamic steady-state weather forcings (for aquifer equilibration) followed by 3 years of 

real weather data (for soil and plant equilibration). These spin-up periods were 1990–2002 for 

calibration, 1998–2010 for validation, with the first 10 calendar years of each period assigned to 

dynamic steady-state weather. The dynamic steady-state weather forcings were the same as those 

used for the plant spin-up model described in section S2. For a description of the weather 

products used, and the initial set up of the SWAT model, see section S1 and Table S1. 

 A total of two SUFI-2 iterations were found sufficient to bring the r-factor down to 

approximately one. The parameter ranges input to SUFI-2 for this second iteration constitute the 

"final model", and the specific set of parameters producing the highest objective of calibration 
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(KGE) constitute the "best model of calibration." Parameter ranges of the final model are listed 

in the "Final range" columns of Table S6, and parameters of the best model of calibration are 

listed in the "Best simulation value" (far-right) column of Table S6. 

 The final model applied to the calibration period had a p-value of 0.94 (i.e., fraction of 

observations within range of model uncertainty) and an r-factor of 0.85. The best model of 

calibration applied to the calibration period produced metrics KGE, NSE, and PBIAS of 0.93, 

0.93, and +6.2% (model overestimate), respectively. Monthly time series of results from this 

model are plotted in Figure 2a of the main paper. The final model applied to the validation period 

had a p-value of 0.90 and an r-factor of 0.71. The best model of calibration applied to the 

validation period produced metrics KGE, NSE, and PBIAS of 0.89, 0.92, and −2.7% (model 

underestimate), respectively. Monthly time series of results from this model are plotted in Figure 

2b of the main paper. These calibration and validation results are considered overall to be very 

good based on performance criteria in Moriasi et al. (2007) and Abbaspour et al. (2007). 
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Table S1. Spatial datasets used in construction of watershed model in ArcSWAT 2012 

 
Dataset Source References 

Elevation Digital elevation model (DEM) from the 
National Elevation Dataset (NED), 1 arc-
second resolution  

USGS (2013) 

Soil State Soil Geographic (STATSGO) data 
base accompanying ArcSWAT 2012, 
scale approximately 1:250,000,  

USDA (1994) 

Land use National Land Cover Database (NLCD) 
2011, 30-m resolution 

USGS (2019) 

Precipitation, minimum 
and maximum air 
temperature, relative 
humidity 

PRISM AN81d product at daily 2.5-
arcminute resolution 

Daly et al. (2008, 
2015); PRISM Climate 
Data 

Downward solar 
radiation, wind speed 

GridMET product at daily 2.5-arcminute 
resolution  

Abatzoglou (2013); 
Climatology Lab 
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Table S2. Parameter values of "base model" manually entered into tables of ArcSWAT project 

 
Parameter 
name 

Description Table Value References 

PLAPS Precipitation lapse rate (mm/km) sub 114.6 Goulden et al. (2012) 

TLAPS Air temperature lapse rate (C/km) sub −5.3 Goulden et al. (2012) 

CANMX Maximum canopy storage (mm 
H20) 

hru 1.0 Harpold et al. (2014), Grip and Hällgren  
(2005), Corbett and Crouse (1968), 
Wang et al. (2005)  

ESCO Soil evaporation compensation 
factor 

hru 0.51 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

SHALLST Initial depth of water in shallow 
aquifer (mm) 

gw 2000 Set to same value as GWQMN while 
allowing storage for revap when shallow 
aquifer storage < GWQMN 

GW_DELAY Groundwater delay time (days) gw 152 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

ALPHA_BF Baseflow alpha factor (recession 
constant) (1/days) 

gw 0.053 Digital filter program of Arnold et al. 
(1995) and Arnold and Allen (1999) 
applied to 1987-2003 daily, full natural 
streamflow at Pine Flat dam (CDEC, 
2020 a) 

GWQMN Threshold depth of water in shallow 
aquifer required for return flow to 
occur (mm) 

gw 2000 Set to same value as SHALLST while 
allowing storage for REVAP when 
shallow aquifer storage < GWQMN 

GW_REVAP Groundwater “revap” coefficient 
allowing upward movement of 
water from shallow aquifer to soil 
and root zone 

gw 0.06 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

REVAPMN Threshold depth of water in shallow 
aquifer for “revap” or percolation to 
deep aquifer to occur (mm) 

gw 1500 Provides 500 mm storage capacity for 
revap when shallow aquifer storage < 
GWQMN   

RCHRG_DP Deep aquifer percolation fraction (-) gw 0.0 Ensures long-term balance between 
stream-outflow volume and volume of 
(precipitation − evapotranspiration) 

SFTMP Snowfall temperature (C) bsn 2.09 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

SMTMP Snow melt base temperature (C) bsn 0.57 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

SMFMX Melt factor for snow on June 21 

(mm H2O C−1 day−1) 

bsn 3.52 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

SMFMN Melt factor for snow on December 

21 (mm H2O C−1 day−1) 

bsn 1.60 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

TIMP Snow pack temperature lag factor 
(-) 

bsn 0.60 Best simulation in supplement Table S6 
of Jepsen et al. (2018) 

SNOCOVMX Minimum snow water content that 
corresponds to 100% snow cover 

bsn 2393 Regression best fit to data from Guan et 
al. (2013), shown in Figure S4 of this 
supplement 

SNO50COV Fraction of snow volume 
represented by SNOCOVMX that 
corresponds to 50% snow cover 

bsn 0.08781 Regression best fit to data from Guan et 
al. (2013), shown in Figure S4 of this 
supplement 

RCN Concentration of nitrogen in rainfall 
(mg/l) 

bsn 1.0 National Trends Network maps by 
National Atmospheric Deposition 
Program (NRSP-3) 
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Table S3. Modifications to plant database of SWAT model (file plant.dat) to more closely 

simulate biophysical parameters of mature Sierra Nevada forest. Land use categories are from 

the National Land Cover Database (NLCD) 2011 (USGS, 2019). Definitions: VPD = vapor 

pressure deficit  

 
Land use 
(land cover) 

Parameter Definition Original 
value 

Modified 
value 

References 

Evergreen 
Forest 

ALAI_MIN Minimum leaf area index 
during dormancy (-) 

0.75 1.5 Heiskanen et al. (2012); Liu et al. 
(2012); Wang and Chen (2012); 
Tang et al. (2014) 

Evergreen 
Forest 

BLAI Maximum (potential) leaf 
area index (-) 

5.0 5.0 No modification made 

Evergreen 
Forest 

FRGMAX Fraction of maximum 
stomatal conductance 
corresponding to 2nd point 
on stomatal conductance 
curve 

0.75 0.75 No modification made 

Evergreen 
Forest 

GSI Maximum stomatal 
conductance (m/s) at high 
solar radiation, low VPD 

0.0020 0.0026 Intermediate between SWAT 
default of 0.002 and value of 
0.0032 in Table 1 of Mu et al. 
(2011) 

Evergreen 
Forest 

T_BASE Minimum (base) 
temperature for tree growth 

(C) 

0.0 0.0 No modification made 

Evergreen 
Forest 

T_OPT Optimal temperature for 

tree growth (C) 

30 10 Mu et al. (2011); Goulden and 
Bales (2014); Kelly and Goulden 
(2016) 

Shrub/Scrub ALAI_MIN Minimum leaf area index 
during dormancy (-) 

0.0 0.5 Shrubs include Ceanothus, 
manzanita, and buckeye (Giger 
and Schmitt, 1993), many of 
which are evergreen 

Shrub/Scrub BLAI Maximum (potential) leaf 
area index (-) 

2.0 1.5 Tang et al. (2014) 

Shrub/Scrub FRGMAX Fraction of maximum 
stomatal conductance 
corresponding to 2nd point 
on stomatal conductance 
curve 

0.75 0.75 No modification made 

Shrub/Scrub GSI Maximum stomatal 
conductance (m/s) at high 
solar radiation, low VPD 

0.0050 0.0057 Intermediate between SWAT 
default of 0.005 and value of 
0.0065 in Table 1 of Mu et al. 
(2011) 

Shrub/Scrub T_BASE Minimum (base) 
temperature for plant 

growth (C) 

12 5.0 See note (1), below 

Shrub/Scrub T_OPT Optimal temperature for 

tree growth (C) 

25 20 See note (2), below 

Barren Land BLAI Maximum (potential) leaf 
area index (-) 

1.5 0.1 "Barren land" in NLCD database 
presumably has almost no 
vegetation cover 

 
Table S3 notes: (1): 5C is intermediate between SWAT default of 12 and value of −1.0 found from adding 6.6C, the average 

difference between average and minimum daily air temperature (not shown), to the value of Tmin_close for shrubs in Mu et al. 

(2011). (2): 20C is intermediate between SWAT default of 25 and value of 15 found from adding 6.6C, the average difference 

between average and minimum daily air temperature (not shown), to the value of Tmin_open for shrubs in Mu et al. (2011).  
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Table S4. SWAT model parameters varied in global sensitivity analysis using Sobol method 

(Saltelli et al., 2000) in SALib (Herman and Usher, 2017). The objective function analyzed was 

Kling-Gupta efficiency (Gupta et al., 2009) of monthly SWAT modeled streamflow. Parameters 

were scaled globally by the following scaling types: v = parameter replacement, r = parameter 

multiplication by (1 + value), a = addition to parameter. 

 
Parameter 
name 

Definition Scaling 
type 

Minimum 
of range 

Maximum 
of range 

References 

CH_N(2) Manning's "n" value for the 
main channel 

v 0.01 0.2 Arnold et al. (2012 a) 

CH_K(2) Effective hydraulic 
conductivity in main 
channel alluvium (mm/hr) 

v 0.0 150 Zhang et al. (2011); Arnold et al. 
(2012 a); Ficklin et al. (2013) 

GW_DELAY Groundwater delay time 
(days) 

v 0.01 220 Jeong et al. (2010); Zhang et al. 
(2011); Ficklin et al. (2013)  

GW_REVAP Groundwater “revap” 
coefficient allowing upward 
movement of water from 
shallow aquifer to soil and 
root zone 

v 0.02 0.2 Arnold et al. (2012 a) 

REVAPMN Threshold depth of water in 
shallow aquifer for “revap” 
or percolation to deep 
aquifer to occur (mm) 

v 1000 3000 Taken to be centered about 
parameters GWQMN and 
SHALLST 

CANMX Maximum canopy storage 
(mm H20) 

v 0.0 4.0 Grip and Hällgren  (2005), 
Corbett and Crouse (1968), Wang 
et al. (2005) 

FRGMAX Fraction of maximum 
stomatal conductance 
corresponding to 2nd point 
on stomatal conductance 
curve 

r −0.25 0.25 Mu et al. (2011) 

GSI Maximum stomatal 
conductance (m/s) at high 
solar radiation, low VPD 

r −0.25 0.25 Range covers SWAT default of 
0.002 and value of 0.0032 in 
Table 1 of Mu et al. (2011) 

BLAI Maximum (potential) leaf 
area index (-) 

r −0.25 0.25 Tang et al. (2014) 

ALAI_MIN Minimum leaf area index 
during dormancy (-) 

r −0.25 0.25 Tang et al. (2014) 

T_BASE Minimum (base) 
temperature for plant 

growth (C) 

a −5.0 5.0 Creates range that does not 
overlap with range of paramter 
T_OPT  

T_OPT Optimal temperature for 

tree growth (C) 

a −5.0 5.0 Goulden and Bales (2014); Kelly 
and Goulden (2016) 

SFTMP Snowfall temperature (C) v −5.0 5.0 Daly et al. (2000); Dai (2008); 
Arnold et al. (2012 a) 

SMFMN Melt factor for snow on 
December 21 (mm H2O 

C−1 day−1) 

v 0.0 8.0 Daly et al. (2000); Fontaine et al. 
(2002); Abbaspour et al. (2007); 
Arnold et al. (2012 a); Ficklin et 
al. (2013); Jepsen et al. (2016)    

SMFMX Melt factor for snow on 

June 21 (mm H2O C−1 

day−1) 

v 0.0 8.0 Daly et al. (2000); Fontaine et al. 
(2002); Abbaspour et al. (2007); 
Arnold et al. (2012 a); Ficklin et 
al. (2013); Jepsen et al. (2016) 
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Table S4 – continued. 

 
Parameter 
name 

Definition Scaling 
type 

Minimum Maximum References 

SMTMP Snow melt base 

temperature (C) 

v −5.0 5.0 Daly et al. (2000); Fontaine et al. 
(2002); Abbaspour et al. (2007); 
Arnold et al. (2012 a); Ficklin et 
al. (2013) 

TIMP Snow pack temperature 
lag factor (-) 

v 0.01 1.0 Arnold et al. (2012 a) 

EPCO Plant uptake compensation 
factor 

v 0.01 1.0 Arnold et al. (2012 a) 

ESCO Soil evaporation 
compensation factor 

v 0.01 1.0 Arnold et al. (2012 a) 

SOL_AWC() Available water capacity of 
a soil layer (mm H2O/mm 
soil) 

r −0.25 0.25 USDA (1999); Jeong et al. 
(2010); Zhang et al. (2011); Qiu 
et al. (2012); Ficklin et al. (2013)    

SOL_BD() Moist bulk density of a soil 

layer (g cm−3) 

r −0.1 0.1 Arnold et al. (2012 a) 

SOL_K() Saturated hydraulic 
conductivity of a soil layer 
(mm/hr) 

r −0.5 0.5 Freeze and Cherry (1979); 
USDA (1999) 

SOL_Z() Depth from soil surface to 
bottom of a soil layer (mm) 

r −0.5 0.5 Watson and Putz (2014); see 
note (1), below 

CN2 Initial SCS runoff curve 
number for soil moisture 
condition II 

r −0.25 0.25 Van Liew et al. (2005); Zhang et 
al. (2011); Qiu et al. (2012); 
Ficklin et al. (2013); Watson and 
Putz (2014)     

OV_N Manning’s "n" value for 
overland flow 

r −0.25 0.25 Arnold et al. (2012 a) 

SURLAG Surface runoff lag 
coefficient 

v 0.01 15 Jeong et al. (2010); Zhang et al. 
(2011); Arnold et al. (2012 a)  

 
Table S4 notes: (1) multiplicative factor of 1.38 needed to get ET high enough during preliminary, manual calibration leading to 

Jepsen et al. (2018).  
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Table S5. Results of Sobol sensitivity analysis showing contribution of each SWAT parameter to 

total modeled variance in Kling-Gupta efficiency (KGE) (Gupta et al., 2009) of monthly 

streamflow. For parameter definitions, see Table S4. Analysis carried out using the SALib 

package for Python (Herman and Usher, 2017). "Total order index" (TO index) is the sum of all 

sensitivity indices involving the parameter, also known as "total sensitivity index" (Saltelli et al, 

2000). "Cumulative variance accounted for" is the fraction of total modeled KGE-variance 

explained by parameters of equal or greater TO index, calculated by forming a running total of 

TO indices normalized to unity. The 12 parameters gray-shaded below accounted for over 99% 

of total modeled KGE-variance. "Best parameter" is the value of the parameter scaling factor 

from the simulation with the highest KGE-value of 0.894 (for scaling types, see Table S4). 

 
Parameter 
name 

Total order 
index 

Confidence interval, 
total order index  

Best parameter  
(highest KGE) 

Cumulative variance 
accounted for 

SMFMX 0.6139 0.0844 4.902 0.4343 

SFTMP 0.2495 0.0588 4.780 0.6108 

CH_K(2) 0.2225 0.0493 37.13 0.7681 

SMTMP 0.1367 0.0413 −0.0635 0.8648 

REVAPMN 0.0484 0.0211 1403 0.8990 

SMFMN 0.0454 0.0431 4.676 0.9311 

CH_N(2) 0.0408 0.0177 0.0348 0.9600 

GW_DELAY 0.0126 0.0069 185.3 0.9690 

SOL_Z() 0.0104 0.0076 0.4780 0.9763 

TIMP 0.0085 0.0127 0.6205 0.9824 

SOL_K() 0.0083 0.0054 −0.4438 0.9882 

GW_REVAP 0.0069 0.0091 0.1660 0.9931 

CN2 0.0059 0.0077 0.0505 0.9973 

CANMX 0.0013 0.0041 1.049 0.9982 

GSI 0.0008 0.0015 −0.1965 0.9987 

T_BASE 0.0007 0.0012 -1.821 0.9992 

SOL_AWC() 0.0004 0.0028 0.2375 0.9995 

ESCO 0.0003 0.0009 0.5780 0.9997 

EPCO 0.0002 0.0016 0.5035 0.9999 

SOL_BD() 0.0001 0.0033 -0.0567 1.0000 

BLAI 0.0000 0.0009 -0.0559 1.0000 

FRGMAX 0.0000 0.0001 -0.0022 1.0000 

ALAI_MIN 0.0000 0.0008 -0.2170 1.0000 

SURLAG 0.0000 0.0000 4.028 1.0000 

OV_N 0.0000 0.0000 -0.0090 1.0000 

T_OPT -0.0001 0.0008 3.784 1.0000 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

Table S6. Parameter ranges of calibrated SWAT model found using SWAT-CUP with the SUFI-

2 (Sequential Uncertainty FItting Ver. 2) method (Abbaspour et al., 2007; Yang et al., 2008; 

Arnold et al., 2012 b). For parameter definitions, see Table S4. Values listed in this table are 

expressed as the scaling factors defined in Table S4. Values in column "Initial range, center" 

were taken from "Best parameter (highest KGE)" column of Table S5. 

 
Parameter 
name 

Absolute 
range, 
minimum 

Absolute 
range, 
maximum 

Initial 
range, 
center 

Initial 
range, 
minimum 

Initial 
range, 
maximum 

Final 
range, 
minimum 

Final 
range, 
maximum 

Best 
simulation 
value 

SMFMX 0.0 8.0 4.902 2.236 7.569 1.677 5.605 2.260 

SFTMP −5.0 5.0 4.780 −1.665 5.0 1.232 5.0 3.453 

CH_K(2) 0.0 150 37.13 0.0 99.98 1.971 67.33 2.265 

SMTMP −5.0 5.0 −0.0635 −3.397 3.270 −2.525 1.338 −1.067 

REVAPMN 1000 2000 1403 1070 1737 1000 1441 1408 

SMFMN 0.0 8.0 4.676 2.009 7.342 0.0 4.773 1.167 

CH_N(2) 0.01 0.2 0.0348 0.01 0.1366 0.0524 0.1373 0.0951 

GW_DELAY 0.01 220 185.3 73.33 220 67.20 169.1 98.93 

SOL_Z() −0.5 0.5 0.4780 −0.1665 0.5 −0.0124 0.3292 0.3072 

TIMP 0.01 1.0 0.6205 0.2905 0.9505 0.4676 0.8217 0.4932 

SOL_K() −0.5 0.5 −0.4438 −0.5 0.1667 −0.4549 −0.0405 −0.4074 

GW_REVAP 0.02 0.2 0.1660 0.0800 0.2 0.1320 0.2 0.1463 
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Figure S1. Annual precipitation versus elevation in upper Kings River watershed in 100-m 

elevation bins. Precipitation based on 1981–2010 climatic normals from the PRISM Norm81d 

product (Daly et al., 2008; PRISM Climate Data), elevations from USGS (2013). 
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Figure S2. Annual air temperature versus elevation in upper Kings River watershed in 100-m 

elevation bins. Temperatures based on 1981–2010 climatic normals from the PRISM Norm81d 

product (Daly et al., 2008; PRISM Climate Data), elevations from USGS (2013). 
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Figure S3. Ranges in MODIS 8-day ET within or touching a 500-m radius buffer around each 

flux tower location. Ranges in MODIS ET within/touching buffer are given by blue bars and 

denoted "MODIS range" in legend. Values of MODIS ET used in this study are from MODIS 

cells containing flux tower locations, plotted above as blue circles and denoted "MODIS point 

query" in legend. Flux tower ET-values shown as black diamonds. We defined MODIS ET-error 

as the difference between the MODIS point query and the flux tower value. These errors are 

much less than differences between MODIS point queries and limits of MODIS ranges, showing 

that the values we used for MODIS ET-error would not be sensitive to spatial variation in 

MODIS ET within a plausible flux tower footprint. 
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Figure S4. SWAT model parameterization of snow areal depletion curve for upper Kings River 

watershed. Values of fractional snow covered area and snow water equivalent are monthly 

averages from Guan et al. (2013) at watershed elevations above 2500 m. Data values are fit to 

the snow areal depletion equation 1:2.4.2 in Neitsch et al. (2011). Fitting was performed using 

the curve_fit function of the scipy.optimize module for Python. One outlier was excluded (red 

circle) having a residual greater than three standard deviations from the best-fit solution. 
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Figure S5. Monthly leaf area index (LAI) and biomass from 30-year spin-up simulation of 

SWAT base model to steady-state weather conditions. Final LAI and biomass from these spin-up 

simulations were used to initialize the "plant spin-up model" (section S2). Dynamic steady-state 

weather were used for these spin-up simulations consisting of daily averages of products listed in 

Table S1 during the 2000–2019 period.    
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Figure S6. Monthly ET versus vapor pressure deficit (VPD) from different data sources at the (a–

c) upper site, (d–f) middle site, and (g–i) lower site. Dashed lines are best fits from linear 

regression. m = slope of regression best-fit with asterisk where p-value < 0.05, R2 = coefficient of 

determination of best-fit. In center column, SWAT modeled ET supplied primarily by aquifer 

water ("REVAP") are plotted as blue-colored diamond symbols. 
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Figure S7. Weather correction to canopy conductance at the lower site based on equation 5 in 

Mu et al. (2007) and biome properties of evergreen needleleaf forest in Table 1 of Mu et al. 

(2011). Weather variables used for the conductance correction are vapor pressure deficit (VPD) 

and minimum air temperature (Tmin) from PRISM AN81d product (Daly et al. 2008, 2015; 

PRISM Climate Data) masked to the watershed subbasin containing the SWAT Hydrologic 

Response Unit at the lower site (Figure 1). (a) Monthly VPD and Tmin versus average air 

temperature (Tave). (b) Canopy conductance correction factor (y-axis) versus Tave. In the MODIS 

ET algorithm, canopy conductance is scaled by the correction factor given by m(Tmin)  m(VPD) 

(equation 5 in Mu et al., 2007). For weather conditions shown, Tmin controls the conductance 

correction when m(Tmin)  m(VPD) and VPD controls the conductance correction when m(VPD) 

 m(Tmin). The transition from Tmin- to VPD-controlled canopy conductance occurs at Tave = 

14.9C. 
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