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Abstract: The ability to spatially characterize runoff generation and forest health depends partly on
the accuracy and resolution of evapotranspiration (ET) simulated by numerical models. A possible
strategy to increase the accuracy and resolution of numerically modeled ET is the use of remotely
sensed ET products as an observational basis for parameter estimation (model calibration) of those
numerical models. However, the extent to which that calibration strategy leads to a realistic rep-
resentation of ET, relative to ground conditions, is not well understood. We examined this by
comparing the spatiotemporal accuracy of ET from a remote sensing product, MODIS MOD16A2,
to that from a watershed model (SWAT) calibrated to flow measured at an outlet streamgage. We
examined this in the upper Kings River watershed (3999 km2) of California’s Sierra Nevada, a
snow-influenced watershed in a Mediterranean climate. We assessed ET accuracies against obser-
vations from three eddy-covariance flux towers at elevations of 1160–2700 m. The accuracy of ET
from the stream-calibrated watershed model surpassed that of MODIS in terms of Nash-Sutcliffe
efficiency (+0.36 versus −0.43) and error in elevational trend (+7.7% versus +81%). These results
indicate that for this particular experiment, an outlet streamgage would provide a more effective
observational basis than remotely sensed ET product for watershed-model parameter estimation.
Based on analysis of ET-weather relationships, the relatively large errors we found in MODIS ET may
be related to weather-based corrections to water limitation not representative of the hydrology of this
snow-influenced, Mediterranean-climate area.

Keywords: evapotranspiration; model; SWAT; calibration; regression; remote sensing; Sierra Nevada;
flux tower; water limitation; vapor pressure deficit

1. Introduction

Accurate knowledge of evapotranspiration (ET) is needed for detailed mapping and
characterization of water losses from terrestrial runoff [1,2] and impacts of drought and
climate variability on forest health [3–5]. Advances in the ability to predict/characterize ET
with ever increasing resolution (e.g., smaller spatial scale) will likely be made through the
integration of remote sensing products with hydrologic modeling tools. Remote sensing
products provide spatiotemporal estimates of ET based on satellite-measured light re-
flectance, meteorological data, and underlying mathematical models that are physical [6–9]
or empirical in nature [10]. Two examples of remote sensing ET products, denoted ETrs,
are the MODerate Resolution Imaging Spectroradiometer (MODIS) ET product [11,12] and
the Global Land Evaporation Amsterdam Model (GLEAM) ET product [13]. ETrs products
such as these offer a potential source of observational data against which watershed nu-
merical models can be calibrated, a process needed for the estimation of model parameters
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that cannot be determined through direct observation [14,15]. ETrs products are currently
available at a much finer spatial resolution than the effective spatial resolution of most
streamgages, the alternative and prevalent source of calibration data. The effective spatial
resolution of a streamgage, which scales as the square root of the upstream contributing
area unique to that gage, is typically orders of magnitude coarser than the spatial resolution
of ETrs products such as MODIS MOD16 or Landsat based provisional product [16,17].
This finer resolution of ETrs affords the modeler the ability to estimate parameters at a
correspondingly finer spatial resolution than is possible with stream-based calibration.

Previous studies have not examined whether ETrs products are sufficiently accurate
to substitute for stream discharge observations as an observational basis for watershed
model calibration. For that substitution to make sense, the ETrs product would need to be
more accurate—relative to ground based observations—than the ET that is simulated by
a watershed model calibrated to stream discharge. Otherwise, the calibration procedure
would only move predictions from the watershed model further from reality in order
to more closely match the remote sensing data. In order to evaluate the sufficiency of
ETrs accuracy, one would need to directly compare the accuracy of ETrs to the accuracy
of ET from watershed model calibrated to streamgage and not ETrs. Such evaluation
has not been carried out in previous studies calibrating watershed models to remotely
sensed ET [18–27]. It is important to recognize that ET products from remote sensing and
watershed models are both derived from models each having their own relative strengths
and weaknesses. ETrs products have been found to suffer in accuracy in certain types
of environments such as nivean montane forest [8,28] and temperate grassland with dry
surface conditions [9,29]. Meanwhile, watershed models are known to have especial
difficulty during rainless periods [23] and periods of extreme runoff [30]. Inadequate
attention has been given to determining when one type of model is accurate enough to
serve as “observations” in calibration of another type of model.

The objective of this study was to determine if a specific remote-sensing ET product,
MODIS MOD16A2, is accurate enough to be used to calibrate a watershed model of a snow-
influenced, streamgage-equipped watershed in a Mediterranean climate. The guiding
question was: Would calibrating the watershed model to ETrs make the ET predictions
from that watershed model more or less accurate than ET predictions from the same
watershed model calibrated to observed streamflow? To address this, we compared the
accuracy of ET from the following two models: (1) the model behind the MOD16A2 ETrs
product, and (2) a watershed model of ET calibrated to a streamgage. In addition, we
analyzed ET-seasonality and ET-weather relationships from both models in order to identify
environmental conditions conducive to model strengths and weaknesses. We applied this
study to the upper Kings River watershed of California’s Sierra Nevada, assessing all
accuracies relative to ground based observations from eddy-covariance flux towers located
along a 1160–2700 m elevational transect.

2. Study Area

The study area is the upper Kings River watershed in the southern Sierra Nevada
mountain range of California, USA. The watershed collects runoff, largely as snowmelt,
from a 3999 km2 area ranging in elevation from 285 m in the western foothills to 4338 m
along the Pacific Crest in the east (Figure 1, lower right). Different forks of the Kings River
pass through a series of reservoirs operated for flood control and hydroelectric power (not
shown) [31] to eventually empty into the Pine Flat Reservoir at the western outlet of the
watershed (Figure 1, lower right). Runoff from the watershed provides water to over a
million acreas of some of the world’s most fertile and productive agricultural land [31].
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Hydrologic Response Units of SWAT watershed model (color-shaded areas) selected for analysis based on proximity to 

flux tower. Topography from USGS National Elevation Dataset [32], water bodies from USGS National Hydrography 

Dataset [33]. 
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Figure 1. Location of (lower right) upper Kings River watershed in southern Sierra Nevada, California, and (a–c) flux towers
within watershed. In (a–c), fishnets are grid cell boundaries of the MODIS MOD16A2 ET product, and HRUs are Hydrologic
Response Units of SWAT watershed model (color-shaded areas) selected for analysis based on proximity to flux tower.
Topography from USGS National Elevation Dataset [32], water bodies from USGS National Hydrography Dataset [33].

The climate of the area is Mediterranean, with cool moist winters and warm dry
summers. Based on 1981–2010 climatic normals from the PRISM Norm81d product [34,35],
the watershed receives approximately 999 mm of precipitation per year on average, most
of which (85%) occurs during the wet six-month period of November–April. A little over
half of all precipitation (54%) flows out of the watershed as the Kings River based on
1981–2010 full-natural streamflow below Pine Flat Reservoir [36]. Annual precipitation
in the watershed increases with elevation, from approximately 530 mm in the lowermost
areas to approximately 1200 mm in the uppermost areas (Supplement Figure S1). Average
air temperature is 7.1 ◦C at the mean elevation of 2329 m, and decreases with elevation
at a rate of −5.4 ◦C per km (Supplement Figure S2). The phase of precipitation shifts
from rain to snow with increasing elevation, becoming mostly snow at elevations above
approximately 2000 m [37,38]. A little over two-thirds of the watershed (68%) resides above
this rain-snow transition elevation.

Soils are distributed over approximately 59% of the watershed up to an elevation of
approximately 2700 m [39,40], with exposed bedrock dominating the higher elevations. The
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soils grade from thermic Alfisols at lowest elevations into frigid Entisols and Inceptisols
at higher elevations. These soils are loamy to sandy, well- to excessively drained, with
thicknesses ranging from 20 to 250 cm [39,40]. In addition to soil, the underlying regolith
(weathered bedrock) is also known to be an important source of water to vegetation [41,42].
The dominant land cover types accounting for 99% of the watershed are evergreen forest
(52%), shrub/scrub (30%), barren land (rock/sand/clay) (9.8%), grassland/herbaceous
(6.0%), and open water (1.4%) [43].

The watershed contains the Southern Sierra Critical Zone Observatory (SSCZO) operated
in cooperation with the Kings River Experimental Watersheds program (KREW) [37,44]. This
observatory includes three eddy-covariance flux towers [28], maintained by the Goulden Lab
at University of California, Irvine [45], which provided the ET observations used in this study
(Section 3.3). For more information about the soils, vegetation, and climate of these sites, the
readers are referred to Hunsaker et al. [37], Bales et al. [38], O’Geen et al. [42], Bales et al. [44],
and Safeeq and Hunsaker [46].

3. Methods
3.1. Summary

Our methods were designed to address two objectives. The first objective was to deter-
mine which would be more accurate, ET predictions from a watershed model calibrated to
streamgage (ETwm) or ET predictions from a watershed model of the same area calibrated
to ETrs product (rather than streamgage). We did this by comparing the ET accuracy of
two models: (1) MODIS MOD16, (2) SWAT calibrated to streamgage. Model accuracies
were evaluated relative to ET observations at three eddy-covariance flux towers (Figure 1).
If ETrs is more accurate than ETwm, then it follows that calibrating the watershed model
to that remote-sensing ET product could potentially improve the watershed model’s ET
accuracy over that of a purely stream-based calibration approach. Conversely, if ETrs is
less accurate than ETwm, then calibrating the watershed model to those ETrs would only
degrade the watershed model’s ET accuracy relative to a stream-based calibration approach.
ET observations and simulations were considered on a monthly basis during water years
2009–2018, with a water year defined to extend from October 1 through September 30. For
metrics of ET model accuracy, we used the Nash-Sutcliffe efficiency (NSE) [47] which equals
the fraction of variance in observations explained by a model, and model percent-bias in
average ET (PBIAS) [48]. We also evaluated how well the two models producing ETrs and
ETwm captured the relationship between average ET and elevation (1160–2700 m). Metrics
of NSE and PBIAS were reported for the period of all water years during 2009–2018, water
years with annual precipitation below the 2001–2019 median of 803 mm (“dry years”)
based on PRISM AN81d product [34,35], and water years with annual precipitation at or
above that median.

The second objective of this study was to compare and contrast ET from flux towers
and models in a way that identifies seasonal conditions associated with model strengths
and weaknesses. We started this out with an examination of monthly time series plots.
Next, we compared and contrasted ET “seasonality”, defined as the set of monthly ET
averages during the calendar year. Lastly, we examined relationships between monthly ET
and weather variables of air temperature and vapor pressure deficit (Section 3.2), variables
which influence atmospheric water demand and are also used to limit canopy conductance
in the ETrs model (Section 3.4).

3.2. Weather Data

Weather data for watershed modeling and examination of ET-weather relationships
were obtained from daily 2.5-arcminute PRISM AN81d product [34,35,49] and GridMET
product [50]. Air temperature and vapor pressure deficit were computed from PRISM
values of minimum air temperature, maximum air temperature, and dewpoint tempera-
ture, along with the equation for saturation vapor pressure in Murray [51]. Downward
solar radiation and wind speed were obtained from GridMET. Daily weather time series
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were assembled for each subbasin of the watershed (N = 47; Figure 1, lower right) by
downsampling the gridded weather data to approximately 250-m resolution, masking the
downsampled data to subbasin boundaries, and computing spatial averages (Supplement
section S1). These weather time series were input to ArcSWAT to force spatial elements of
the watershed model referred to as Hydrologic Response Units (HRUs) (Section 3.5). The
weather data used for the examination of ET-weather relationships were taken from the
model HRUs nearest to the flux towers as shown in Figure 1.

3.3. Flux Tower Observations of ET

The ET observations used in this study were collected at three flux towers (Figure 1)
situated along an environmental gradient ranging from rain-dominated Ponderosa pine at
1160 m to snow-dominated Lodgepole pine at 2700 m [28] (Table 1). The observations were
collected during the day at 30-minute intervals using the eddy covariance method [52], at a
height of 5–10 m above the tallest trees [28]. We first obtained the 30-minute ET observations
and “Flexible Filler” processing script (Matlab) from the Goulden Lab [45]. Using the
Flexible Filler script, we filtered out 30-minute data during calm atmospheric conditions
and filled the resulting gaps using the regression approach in Goulden et al. [28,52]. The
filtered, gap-filled data were then aggregated to monthly values, requiring at least 50%
data availability for each month. Dates of data availability slightly differed for each flux
tower, as shown in Table 1.

Table 1. Site characteristics of eddy covariance flux towers providing ET observations for this study [28]. These sites are
mapped in Figure 1. Water years of data used for this study are listed at right. Years with partial data availability, indicated
with asterisk, provided less than 11 out of 12 months’ worth of data.

Site Name
(This Paper)

Local Site
Name Elevation (m) Dominant Vegetation Latitude

(deg)
Longitude

(deg)
Data Availability

(Water Years)

Upper Short Hair
Creek 2700 Lodgepole pine 37.0671 −118.9871 2010–2011, 2012 *,

2015 *, 2016–2018

Middle Providence 301 2015 White fir, pine, cedar 37.0673 −119.1948 2009–2018

Lower Soaproot
Saddle 1160 Ponderosa pine, oak 37.0311 −119.2563 2011–2018

3.4. Remote Sensing of ET

The ETrs product used in this study was the 8-day, 0.25-arcminute global MOD16A2
product from MODIS sensors onboard the Terra and Aqua satellites [11,12,53]. The model
behind this product uses a modifed Penman-Monteith approach adapted from Cleugh
et al. [6] to predict evaporation from wet and dry soil, evaporation from wet canopy, and
transpiration from dry canopy [12,54]. The model operates at a daily time step using
meteorology from NASA’s Global Modeling and Assimilation Office (GMAO) reanalysis
dataset (1.0 × 1.25◦ resolution), 8-day composites of absorbed photosynthetically active
radiation (FPAR) and leaf area index (LAI), and 16-day composites of albedo. Limitations
on ET associated with water availability and stomatal physiology (e.g., Jarvis [55]) are
modeled in the MOD16A2 product using canopy conductance correction factors consisting
of linear functions of vapor pressure deficit and minimum air temperature [11,12,54]. These
functions are parameterized by biome-specific look-up tables organized by land cover
classification (Table 3.2 of Running et al. [54]).

There was some uncertainty as to how ET in individual MODIS cells, each approxi-
mately 500-m across, would correspond to flux tower observations which collect fluxes
from areas (footprints) typically measuring 100–2000 m across [56]. For the comparisons to
ET from SWAT and flux towers, and in consideration of plausible intra-footprint variability
in MODIS data (see Supplement Figure S3), we decided to obtain the MODIS ET data
from the single MODIS cells containing the flux tower locations (Figure 1). This decision
followed from the results in Supplement Figure S3 showing that MODIS intra-footprint
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variability tends to be substantially less than same-cell differences between MODIS and
flux tower. We filtered out any MOD16A2 data having QA/QC flags not of “good qual-
ity” and not free of “significant” cloud cover, then aggregated it to monthly values using
time-weighted averaging and requiring at least 50% data availability for each month.

3.5. Watershed Modeling of ET

We modeled ET in the upper Kings River using the Soil & Water Assessment Tool
(SWAT) version 2012, with ArcSWAT version 2012 for model construction. SWAT dates back
to the late 1970s for research into land management impacts on water, sediment, nutrients,
and pesticides [57–59]. It has been widely used to simulate hydrologic fluxes in snow-
influenced watersheds such as this study area [60–65]. In SWAT, the water conservation
equation is solved at a daily time step in HRUs, each of which is a numerical 1-D element
(“bucket”) of homogeneous land cover, soil, and slope. Each HRU exchanges water/energy
with the atmosphere (including ET) and delivers runoff directly to the stream reach within
enclosing subbasin (subbasins shown in Figure 1, lower right). We selected the Penman-
Monteith option for potential ET; actual ET was computed based on potential ET and water
availability in soil and underlying aquifer [66].

To construct the watershed model, we first built a “base model” in ArcSWAT using
the parameters and input datasets for elevation, soil, land cover, meteorology, and snow
cover detailed in Supplement section S1. We then initialized the base model with LAI
and biomass from the end of a 30-year spin-up forced by dynamic steady-state weather
(Supplement section S2), forming the “plant spin-up” model representing mature forest
conditions at the start of simulations. Next, we applied a calibration procedure to the plant
spin-up model as follows. First, we used a global sensitivity analysis (GSA) to identify
the most influential parameters of the plant spin-up model to estimate via calibration.
Using the Sobol method of GSA [67], we identified the influential parameters (N = 12)
accounting for 99% of the variance in model streamflow error (Supplement section S3).
Next, we calibrated the plant spin-up model by estimating values of influential parameters
that minimized model errors relative to 2003–2010 monthly, full-natural streamflow at
the watershed outlet [36], as described in Supplement section S4. We used for calibration
the Sequential Uncertainty Fitting algorithm (SUFI-2) calibration and uncertainty tool of
the SWAT-CUP software package [68–70]. Lastly, we validated the calibrated model to
2011–2019 monthly, full-natural streamflow using the parameter ranges obtained from
calibration (Supplement Table S6). Simulations for calibration and validation were spun
up to a total of 13 years of weather data, consisting of 10 years of dynamic steady-state
weather (for aquifer equilibration) followed by three years of real weather (for soil and
plant equilibration) (Supplement sections S2 and S4). In terms of model performance, the
calibrated and validated models both showed “very good” results (Figure 2) based on
criteria in Moriasi et al. [48] and Abbaspour et al. [68]. For the comparisons to flux tower
and MODIS, we used monthly ET of the “best” simulation (Figure 2) taken from the HRUs
nearest to the flux towers (Figure 1).
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Figure 2. Monthly stream discharge at Pine Flat Dam from observations versus best simulation of SWAT watershed model.
95% simulation probability also shown, defined at the 2.5– to 97.5–percentile of monthly simulations. Fit statistics are for
“best simulation” having the highest objective function, i.e., the Kling-Gupta efficiency (KGE) [71]. NSE = Nash-Sutcliffe
efficiency [47], PBIAS = model percent bias [48].

4. Results
4.1. Long-term ET

Long-term ET observations were substantially greater than the MODIS model pre-
dictions and greater but more similar to the SWAT model predictions. Observed ET
averaged across all months and flux towers was 54.6 mm/mo (Figure 3). This value
was 13% greater than SWAT’s prediction (48.5 mm/mo), 83% greater than MODIS’s
prediction (29.8 mm/mo) (Figure 3). In addition, observed long-term ET in the upper
Kings River decreased with elevation at a markedly steeper rate than the MODIS model
predicted. Based on the flux tower network, ET decreased with elevation at a rate of
−0.013 mm mo−1 m−1 (Figure 3). This rate was fairly close (7.7%) to the SWAT model
prediction of −0.012 mm mo−1 m−1 (Figure 3). In contrast, the MODIS model predicted
an elevational trend of only −0.0025 mm mo−1 m−1, one-fifth the observed value. These
results showed that both magnitude and elevational trend in long-term ET were predicted
much more accurately by SWAT than MODIS.

4.2. Monthly ET

ET observations from the flux towers followed a seasonal pattern that roughly tracked
the length of daylight, with peak values occurring near the middle of calendar years
and minimum values occurring near the end of calendar years (Figure 4). Outputs from
the SWAT model followed a similar seasonal timing, although the shape of its annual
waveforms was sometimes excessively narrowed and peaked, such as in year 2016 at the
middle site (Figure 4, middle). The MODIS model produced annual waveforms in ET that
were notably out of phase with observations and SWAT model predictions. ET-values
from MODIS tended to be on a descending limb, or near their annual minima (within one
month thereof), during summer when observed and SWAT-modeled ET were near their
maxima. This out-of-phase characteristic of MODIS predictions was especially apparent
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during years 2016–2018 at the lower and middle sites (Figure 4). In addition, the annual ET
waveforms from MODIS appeared less distinct than those from observations and SWAT.
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Figure 3. Average monthly ET versus elevation from flux towers, MODIS, and SWAT. Averages across
all elevations are parenthesized in the legend. m = slope of linear-regression trendline, R2 = coefficient
of determination of linear-regression fit.

In terms of the NSE metric of model fitness, the SWAT model matched monthly ET
observations better than the MODIS model. The NSE of SWAT across all flux tower sites
was +0.36, ranging from +0.04 at the middle site to +0.68 at the upper site (Table 2). In
comparison, the NSE of MODIS across all sites was −0.43, ranging from −0.73 at the middle
site to −0.33 at the lower site. These negative NSE-values indicate a level of prediction
efficiency lower than that provided by knowledge of long-term observed ET. Both SWAT
and MODIS showed minimum prediction efficiency at the middle site (Table 2). In addition,
both models showed slightly lower prediction efficiency (NSE lower by ~0.2) during wet
years than dry years (Table 2).
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Figure 4. Monthly ET from flux towers, MODIS, and SWAT at three sites in upper Kings River watershed.

In terms of model bias, both SWAT and MODIS underestimated long-term ET as
shown by negative PBIAS-values in Table 2. However, the underestimates from MODIS
were substantially greater in magnitude than those from SWAT. The SWAT model underes-
timated average monthly ET across all sites by 13% (PBIAS = −13%). These underestimates
ranged from 23% at the middle site to 5% at the other two sites. In comparison, the MODIS
model underestimated average monthly ET across all sites by 47% (PBIAS = −47%), with
underestimates ranging from 50% at the middle site to 35% at the upper site.

4.3. Seasonality in ET and Weather

Seasonal distributions in ET, potential ET (PET), and weather variables are plotted in
Figure 5. Observed ET at the flux towers reached peak values in June or July, following
a seasonal distribution (“seasonal curve”) that was well aligned with PET from MODIS
(Figure 5, left column). Air temperature and vapor pressure deficit reached peak values in
July or August (Figure 5, middle column), following seasonal curves that closely tracked
one another. This close tracking indicated a strong cross-correlation of these weather
variables on a monthly time scale (R2 = 0.89–0.94 for three sites, not shown). Based on
these results, air temperature and vapor pressure deficit reached maximum seasonal values
within approximately one month of observed ET and MODIS PET. This timing seemed
reasonable given that these weather variables are known to strongly influence atmospheric
water demand.
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Table 2. Error statistics of monthly ET from MODIS, SWAT, and air temperature corrected MODIS,
relative to flux tower observations. “All site” statistics (bottom) are for monthly ET data concatenated
across the three sites. “All years” are water years 2009–2018, “wet years” are water years 2009–
2011 and 2016–2017, and “dry years” are water years 2012–2015 and 2018. NSE = Nash-Sutcliffe
efficiency [47], PBIAS = percent bias (positive = model overestimate) [48], N = number of months.

All years Wet years Dry years

Site Product NSE PBIAS N NSE PBIAS N NSE PBIAS N

Upper

MODIS −0.56 −35 57 −0.66 −32 39 −0.42 −40 18

SWAT +0.68 −5.4 68 +0.67 −3.8 47 +0.70 −9.1 21

Corrected
MODIS +0.77 +1.7 57 +0.78 +2.2 39 +0.75 +0.67 18

Middle

MODIS −0.73 −50 104 −1.0 −57 46 −0.54 −43 58

SWAT +0.04 −23 120 −0.04 −31 60 +0.13 −15 60

Corrected
MODIS +0.69 −1.5 104 +0.70 −12 46 +0.64 +9.3 58

Lower

MODIS −0.33 −49 91 −0.45 −53 33 −0.23 −47 58

SWAT +0.41 −5.3 95 +0.27 +3.5 36 +0.53 −10.7 59

Corrected
MODIS +0.60 −1.3 91 +0.63 −7.0 33 +0.57 +2.1 58

All sites

MODIS −0.43 −47 252 −0.56 −49 118 −0.31 −44 134

SWAT +0.36 −13 283 +0.27 −14 143 +0.46 −12 140

Corrected
MODIS +0.67 −0.89 252 +0.71 −7.1 118 +0.63 +4.9 134

A seasonal asynchronicity was observed between MODIS ET and MODIS PET. MODIS
ET reached a seasonal minimum only 1–2 months after the seasonal maximum in MODIS
PET (Figure 5, left). MODIS PET reached a maximum value in July at all three sites. In
comparison, MODIS ET reached a minimum value only one month later at the lower and
middle sites, and two months later at the upper site (Figure 5, left). Such occurrences
of minimum ET near the time of maximum atmospheric water demand are indicative of
pronounced limitations on ET in the MODIS model.

Seasonal curves of SWAT ET tended to be skewed toward times earlier in the year
relative to SWAT PET (Figure 5, right). These ET and PET curves closely tracked one
another between December and mid-summer. Then, in mid-summer, the ET curves began
following descending limbs 1–2 months before descending limbs of PET. This difference
in timing of descending limbs produced summer and fall deficits of ET relative to PET
(Figure 5, right). Such skewness of ET relative to PET is indicative of a seasonal shift in
limitation on ET in the SWAT model.

4.4. ET-weather Relationships

The SWAT- and MODIS-models produced markedly different relationships between
monthly ET and weather. Monthly ET from SWAT, as well as flux towers, showed a
significant positive relationship to air temperature (Figure 6, left and middle columns). At
the flux towers, slopes of linear regression between ET and temperature ranged from 3.8 to
4.0 mm mo−1 (◦C)−1. These slopes for SWAT ranged from 3.0 to 5.2 mm mo−1 (◦C)−1. In
contrast, monthly ET from MODIS showed either no significant relationship to temperature
(p-value > 0.05) or a significant negative relationship (Figure 6, right column). At the lower
and middle sites where no significant relationship to temperature occurred, there were
distinct mid-temperature peaks in MODIS ET. At the lower site, MODIS ET reached a peak
value at an intermediate air temperature of 16.1 ◦C (Figure 6i). At the middle site, this
peak ET occurred at an intermediate temperature of 7.9 ◦C (Figure 6f). Mid-temperature



Remote Sens. 2021, 13, 1258 11 of 19

ET peaks such as these did not occur in the flux tower observations or SWAT predictions.
Vapor pressure deficit, noted earlier to be strongly correlated to temperature, showed a
significant positive relationship to ET from both flux towers and SWAT model (Supplement
Figure S6). In contrast, vapor pressure deficit showed either no significant relationship
(p-value > 0.05) or a significant negative relationship to ET from MODIS (Supplement
Figure S6).
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lower site. Dashed lines are best fits from linear regression. m = slope of regression best-fit with asterisk where p-value < 0.05,
R2 = coefficient of determination of best-fit. In center column, SWAT modeled ET supplied primarily by aquifer water
(“revap” flux) are plotted as blue-colored diamond symbols.

Scatterplots of monthly ET from SWAT exhibited kink-like features at the middle and
upper sites, and a bifurcation pattern at the lower site (Figure 6, middle column). Data
points within the elbows of these kinks and lower arms of bifurcation occurred during
times when SWAT ET was supplied primarily by aquifer water (blue diamond symbols in
Figure 6, middle column). At other times, SWAT ET was supplied primarily by water in
soil overlying the aquifer. The transition from soil- to aquifer-sourced ET was observed (not
shown) to coincide with the relatively abrupt declines in SWAT ET during late summer and
fall (Figure 4), and may have contributed to the excessively narrow shapes of ET annual
waveforms mentioned in Section 4.2.
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5. Discussion
5.1. Need to Assess Remotely Sensed ET before Use in Watershed Model Calibration

Our results illustrate a case where spatiotemporal information about ET would be
represented more accurately by a watershed model calibrated to streamflow than a wa-
tershed model calibrated to ETrs. This assertion follows from our finding that the ETrs
(MODIS) data were less accurate than ET predictions from watershed model calibrated to
streamflow. ET from the MODIS model had a PBIAS of −47% and NSE of −0.43 across all
sites, compared to a PBIAS of −13% and NSE of +0.36 for ET from the stream-calibrated
watershed model (Table 2). Moreover, the negative relationship between long-term ET and
elevation (Figure 3) was underestimated by 81% in the MODIS model compared to only 8%
in the stream-calibrated watershed model. In general, there would clearly be cases where
a watershed model’s representation of ET would likely be improved via calibration to
ETrs, one example being a watershed not instrumented with any streamgages. More study
is needed, however, to understand the conditions (e.g., climate, modeling frameworks,
density of observations) for which the use of ETrs for watershed model calibration would
produce superior ET accuracy over use of observed stream discharge.

5.2. Representation of Water Iimitation in Remote Sensing Products

Plants respond to water stress by regulating their stomata, which in turn modifies tran-
spiration rate [8]. This regulation process is known to be a complex function of atmospheric
conditions and plant water potential (including cell turgor pressure) [55,72]. The MODIS ET
model accounts for this by numerically correcting the canopy conductance of water vapor
using functions of minimum air temperature and vapor pressure deficit (VPD) [11,12,54].
The air temperature component of this conductance correction is meant to account for
temperature limitation on plant growth while the VPD component is meant to account
for water limitation. For weather at the lower site, the MODIS algorithm would predict
an increase in canopy conductance with air temperature to approximately 15 ◦C, then a
decrease in canopy conductance with further warming (Supplement Figure S7b). Below
the transition temperature of 15 ◦C, the temperature-correction component dominates the
overall correction to ET giving “temperature-limited” transpiration. Above the transition
temperature, the VPD-correction component dominates giving “water-limited” transpira-
tion. The transition temperature of 15 ◦C approximately coincides with the observed air
temperature at which MODIS ET reaches a peak value at the lower site, 16 ◦C (Figure 6i).
Based on this finding, the negative trend shown in Figure 6i between MODIS ET and air
temperature for air temperatures > 16 ◦C, and absence of significant relationship between
ET and temperature overall, can be explained by unrealistically high VPD-limitation on ET
in the MODIS model.

This argument also seems to apply to the middle site. As a reminder, the air temperatures
used in an ET-weather relationship were obtained from the watershed subbasin containing
the selected site of interest (Section 3.2, Figure 1). Air temperatures at the middle site were
8 ◦C cooler on average than at the lower site (Figure 5e versus Figure 5h). This temperature
difference exactly coincides with the −8 ◦C offset of maximum MODIS ET at the middle
site relative to the lower site (Figure 6f versus Figure 6i). This can be explained as follows.
The 8 ◦C difference in air temperature between the lower and middle sites occurred across
a relatively short distance of approximately 7 km (Figure 1). A difference in weather across
this short of distance would not be registered in the MODIS ET product because of its use of
weather data at 1◦ × 1.25◦ resolution [11,12]. A mismatch in resolution of weather forcings
between the SWAT model (0.042◦ × 0.042◦) and MODIS model (1◦ × 1.25◦) would thus
introduce an apparent ET offset of −8 ◦C at the middle site relative to the lower site. This
argument does not seem to apply at the upper site because at that location, a clear transition
from temperature-limited ET to water-limited ET with increasing air temperature did not
occur (Figure 6c).

Based on this interpretation, the relatively large underestimates in warm-season ET
from MODIS (Figures 4 and 5) stemmed from excessive VPD-limitation on canopy conduc-
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tance in the MODIS model. In addition to atmospheric conditions, canopy conductance
is known to be a function of plant water potential, which in turn depends on subsurface
water availability and the ability of plants to access that water through their roots [72].
Weather, water availability, and plant roots are independent factors (at least to some degree),
which is likely a reason for differing ET-VPD relationships across different geographic
regions [73,74]. In the snow-influenced Mediterranean climate of the study area, snowmelt
is known to be an important source of water to forest during the dry season. In such
environments, VPD and actual water availability in the subsurface may be more loosely
coupled than in the environments to which the MODIS model has been trained [75].

5.3. Regression-Based Correction to Remotely Sensed ET

ET from observations and the MODIS model showed markedly different relationships to
weather variables (Section 4.4). Correlations between ET and air temperature were signifi-
cantly positive at the flux towers (Figure 6, left) and either negative or not significant from
MODIS (Figure 6, right). These contrasting ET-temperature relationships provided a possible
basis for correcting MODIS ET to weather using linear regression. MODIS ET error expressed
as a fraction of PET, defined as yregr = (MODIS ET − flux tower ET)/(MODIS PET), was found
to be well correlated to air temperature. Best fits from linear regression had slopes ranging
from −0.010 to −0.024 ◦C−1 and R2-values of 0.25–0.66 (Figure 7a−c). The best of all fits was
found at the upper site, where the R2 was 0.66 (Figure 7c). We used this regression model to
predict corrected values of MODIS ET, set equal to MODIS ET − [(MODIS PET) × yregr]. The
resulting predictions of corrected MODIS ET matched the flux tower observations better than
both the original MODIS ET and the SWAT model (Figure 7d–f). The corrected MODIS ET
had an NSE-value of +0.67 and a PBIAS of −0.9% across all sites, statistics considerably better
than those of both the uncorrected MODIS model and the SWAT model (Table 2, bottom). In
addition, most of the error in elevational trend in long-term MODIS ET was removed by the
regression-based correction to weather (Figure 3 versus Figure 7f). The PBIAS of the corrected
MODIS ET was noted to be 12% higher during dry years than wet years (Table 2, bottom),
suggesting that regression models trained separately to dry and wet periods may provide
further improvement to the correction method.
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6. Conclusions

The concept of using remotely sensed ET products as “observations” for watershed
model calibration offers great potential for resolving spatial heterogeneity in landscape
properties. However, the extent to which that numerically resolved information corre-
sponds to actual conditions on the ground has yet to be determined. That correspondence
should depend on the relative accuracies of the two models involved: (1) the model behind
the remote sensing product and (2) the watershed model not calibrated to the remote
sensing product. We examined this by comparing the accuracy of ET from a remote sens-
ing product, MODIS MOD16A2, to the accuracy of ET from a watershed model (SWAT)
calibrated to streamflow. ET accuracies were evaluated relative to observations from three
flux towers in a Mediterranean climate extending from rain-dominated Ponderosa pine at
1160-m elevation to snow-dominated Lodgepole pine at 2700-m elevation.

The accuracy of ET from the SWAT watershed model surpassed that from the MODIS
model across time and space. SWAT explained 4–68% (36% overall) of the variance in
monthly ET observations at the flux towers, while MODIS explained none of the observed
variance as shown by negative values of Nash-Sutcliffe efficiency. Long-term ET observed
across the towers decreased with elevation at a rate of −0.013 mm mo−1 m−1. This
elevational trend in long-term ET was slightly underestimated by SWAT, 7.7%, and largely
underestimated by MODIS, 81%. These findings show that if the watershed model had been
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calibrated to remotely sensed ET rather than to stream discharge observations, the resulting
accuracy of watershed model ET-predictions would have been substantially degraded.

The relatively large ET-errors from the MODIS model are interpreted to stem at least
in part from an unrealistic dependence of canopy conductance on vapor pressure deficit
(VPD). This interpretation is based on an erroneous reversal in slope of MODIS ET versus
air temperature that approximately coincides with the transition from temperature- to
VPD-controlled limitation on canopy conductance in the MODIS algorithm. This would
explain the large underestimates in MODIS ET during the warmest times of the year when
VPD reaches peak values. The empirical correction used in the MODIS algorithm to account
for water limitation on ET may not represent the actual dynamics of water availability
in the study area, which may be more loosely coupled to VPD than is assumed in the
MODIS model.

Errors in monthly MODIS ET were found to be well correlated to air temperature.
We showed that this could be used to “correct” ET-values from MODIS using linear
regression with inputs of MODIS ET error, MODIS potential ET, and air temperature.
This correction procedure removed much of the error in ET from the MODIS model, and
produced ET predictions more accurate than those from the SWAT model. The regression-
corrected MODIS ET may therefore serve as an improved source of “observations” for
spatial calibration of a watershed model over the original MODIS ET data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13071258/s1: Section S1: Construction of base watershed model in ArcSWAT; Section
S2: Watershed model initialization with LAI and biomass of mature forest; Section S3: Sensitivity
analysis of influential watershed model parameters; Section S4: Watershed model calibration and
validation; Table S1: Spatial datasets used in construction of watershed model in ArcSWAT 2012;
Table S2: Parameter values of “base model” manually entered into tables of ArcSWAT project; Table
S3: Modifications to plant database of SWAT model to more closely simulate biophysical parameters
of mature Sierra Nevada forest; Table S4: SWAT model parameters varied in global sensitivity analysis
using Sobol method; Table S5: Results of Sobol sensitivity analysis showing contribution of each
SWAT parameter to total modeled variance in Kling-Gupta efficiency (KGE) of monthly streamflow;
Table S6: Parameter ranges of calibrated SWAT model found using SWAT-CUP with the SUFI-2
(Sequential Uncertainty FItting Ver. 2) method; Figure S1: Annual precipitation versus elevation in
upper Kings River watershed in 100-m elevation bins; Figure S2: Annual air temperature versus
elevation in upper Kings River watershed in 100-m elevation bins; Figure S3: Range of MODIS 8-day
ET-values within or touching a 500-m radius buffer around each flux tower location; Figure S4: SWAT
model parameterization of snow areal depletion curve for upper Kings River watershed; Figure S5:
Monthly leaf area index (LAI) and biomass from 30-year spin-up of SWAT base model to steady-state
weather conditions; Figure S6: Monthly ET versus vapor pressure deficit (VPD) from different data
sources at each of the three study sites; Figure S7: Weather correction to canopy conductance at the
lower site based on MODIS model.
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