An Application of Persistent Scatterer Interferometry (PSI) Technique for Infrastructure Monitoring
Abstract
:1. Introduction
2. The Case Study: Salerno Area
2.1. Road Network
2.2. Geological Settings
3. Materials and Methods
- The geospatial database containing, but not limited to, both the linear infrastructures (railways, main and secondary roads, etc.) and the public and private buildings. The geocoded viaducts being examined (Madonna del Monte, Olivieri, Caiafa and Madonna degli Angeli) were extruded from the regional Topographic Data Base (TDB) published in 2011, at scale 1:5000.
- A digital terrain model (DTM), at 1 m spatial resolution, derived from the 2011 LiDAR data provided by the Ministry of Environment, Land and Sea. The LiDAR data belong to the database of the Italian National Geoportal, produced within the framework of the Not-Ordinary Plan of Remote Sensing. The characteristics of the LiDAR data, as stated by the authority responsible for their distribution, are as follows: point density greater than 1.5 points per square meter, planimetric accuracy (2σ) of 30 cm and altimetric accuracy (1σ) of 15 cm. The LiDAR data (point cloud) processing has been based on: (i) spatial referencing of all source data in a given map coordinate systems, UTM/ETRF00, with orthometric heights; (ii) DTM interpolation of the point cloud based on a TIN (triangulated irregular network) according to the Delaunay triangulation method; (iii) improvement of the TIN by adding breaklines extracted from the TDB and transformation in a raster with a spatial resolution of 1 m and (iv) DTM filtering and generation of contour lines. The whole process was developed in Python using the ArcGIS library (ArcPy).
- The lithological, geostructural and landslide hazard and risk maps provided in digital format (shapefile) by the Southern Apennines River Basin District Authority.
- SAR images: The list of the images is shown in Table 1, with the main technical characteristics. The interferometric data have been obtained on the basis of SAR images of the ERS1, ERS2 and ENVISAT missions from the ESA archives, both in ascending and descending orbit; in particular, the areas of interest are covered by data from the period 1993–2000 (ERS 1/2) and 2002–2008 (ENVISAT). COSMO-SkyMed images have also been processed to cover the time interval from 2013 to the end of February 2020. In our analysis only the ascending orbits have been analyzed, since the descending ones were affected by the shadowing effect due to the slope orientation.
3.1. PSI Data Analysis
3.2. GIS Analysis
- First, the PSI measurements were interpolated using the algorithm ordinary Kriging (OK) [56]. OK estimates the value to be assigned to a point of a region for which a variogram is known, using data in the neighborhood of the estimation location. This interpolation method differs from other deterministic methods as it computes the weights applied to each value in the neighborhood based on the correlation or not-correlation between them, which is expressed by the variogram function. This type of interpolation has been applied to all of the ERS, ENVISAT and COSMO-SkyMed constellation PSI results.
- Second, a spatial cluster analysis has been applied to the highest resolution results obtained from the processing of the COSMO-SkyMed data. This is performed through the application of the cluster and outlier analysis (Anselin Local Moran’s I) method [57,58], used to detect spatial clusters of points with high or low values and spatial outliers within these clusters (Figure 6). This method uses Moran’s I statistic of spatial association (Equation (1)), a z-score, and a p-value to encode each feature in the dataset. When a feature has neighboring features with similar high or low attribute values, positive values are assigned. Conversely, negative values indicate dissimilar surrounding values around an outlier.
4. Results
4.1. Classifications and Trends of The PSI Measurements
4.2. PSI Spatial Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bru, G.; González, P.J.; Mateos, R.M.; Roldán, F.J.; Herrera, G.; Béjar-Pizarro, M.; Fernández, J. A-dinsar monitoring of landslide and subsidence activity: A case of urban damage in Arcos de la Frontera, Spain. Remote Sens. 2017, 9, 787. [Google Scholar] [CrossRef] [Green Version]
- Gigli, G.; Fanti, R.; Canuti, P.; Casagli, N. Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: The case of Mt. Beni (Florence, Italy). Eng. Geol. 2011, 120, 48–59. [Google Scholar] [CrossRef]
- D’Amico, F.; Gagliardi, V.; Bianchini Ciampoli, L.; Tosti, F. Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDT E Int. 2020, 115, 102291. [Google Scholar] [CrossRef]
- Bianchini Ciampoli, L.; Gagliardi, V.; Ferrante, C.; Calvi, A.; D’Amico, F.; Tosti, F. Displacement monitoring in airport runways by persistent scatterers SAR interferometry. Remote Sens. 2020, 12, 3564. [Google Scholar] [CrossRef]
- Bianchini Ciampoli, L.; Gagliardi, V.; Clementini, C.; Latini, D.; Del Frate, F.; Benedetto, A. Transport infrastructure monitoring by InSAR and GPR data fusion. Surv. Geophys. 2020, 41, 371–394. [Google Scholar] [CrossRef]
- Arangio, S.; Calò, F.; Di Mauro, M.; Bonano, M.; Marsella, M.; Manunta, M. An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct. Infrastruct. Eng. 2014, 10, 1469–1483. [Google Scholar] [CrossRef]
- Lazecky, M.; Hlavacova, I.; Bakon, M.; Sousa, J.J.; Perissin, D.; Patricio, G. Bridge displacements monitoring using space-borne X-band SAR interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Goel, K.; Gonzalez, F.R.; Adam, N.; Duro, J.; Gaset, M. Thermal dilation monitoring of complex urban infrastructure using high resolution SAR data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 954–957. [Google Scholar]
- Raucoules, D.; Colesanti, C.; Carnec, C. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosci. 2007, 339, 289–302. [Google Scholar] [CrossRef]
- Ding, X.L.; Liu, G.X.; Li, Z.W.; Li, Z.L.; Chen, Y.Q. Ground subsidence monitoring in hong kong with satellite SAR interferometry. Photogramm. Eng. Remote Sens. 2004, 70, 1151–1156. [Google Scholar] [CrossRef]
- Valarezo, D.; Mendieta, G.; Quiñones, M.; Zarate, B.; Quiñonez, V.; Soto, J. Landslide monitoring system through wireless sensor network using RTK technique: Case of study basin of Loja City. In Conference on Information Technologies and Communication of Ecuador; Springer: Cham, Switzerland, 2020; pp. 257–269. [Google Scholar]
- Rau, J.; Jhan, J.-P.; Andaru, R. Landslide deformation monitoring by three-camera imaging system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Lu, Z. Remote sensing of landslides—A review. Remote Sens. 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Palenzuela, J.A.; Marsella, M.; Nardinocchi, C.; Pérez, J.L.; Fernández, T.; Chacón, J.; Irigaray, C. Landslide detection and inventory by integrating LiDAR data in a GIS environment. Landslides 2015, 12, 1035–1050. [Google Scholar] [CrossRef]
- Delacourt, C.; Allemand, P.; Berthier, E.; Raucoules, D.; Casson, B.; Grandjean, P.; Pambrun, C.; Varel, E. Remote-sensing techniques for analysing landslide kinematics: A review. Bull. Soc. Geol. Fr. 2007, 178, 89–100. [Google Scholar] [CrossRef]
- Barla, G.; Antolini, F.; Barla, M.; Mensi, E.; Piovano, G. Monitoring of the beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol. 2010, 116, 218–235. [Google Scholar] [CrossRef]
- Lienhart, W. Geotechnical monitoring using total stations and laser scanners: Critical aspects and solutions. J. Civ. Struct. Health Monit. 2017, 7, 315–324. [Google Scholar] [CrossRef]
- Beshr, A.A.; Abo Elnaga, I.M. Investigating the accuracy of digital levels and reflectorless total stations for purposes of geodetic engineering. Alex. Eng. J. 2011, 50, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Barba, S.; di Filippo, A.; Limongiello, M.; Messina, B. Integration of active sensors for geometric analysis of the Chapel of the Holy Shroud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Barbarella, M.; Di Benedetto, A.; Fiani, M.; Guida, D.; Lugli, A. Use of DEMs derived from TLS and HRSI data for landslide feature recognition. ISPRS Int. J. Geo Inf. 2018, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Barbarella, M.; D’Amico, F.; De Blasiis, M.R.; Di Benedetto, A.; Fiani, M. Use of terrestrial laser scanner for rigid airport pavement management. Sensors 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsella, M.; Scaioni, M. Sensors for deformation monitoring of large civil infrastructures. Sensors 2018, 18, 3941. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Casagli, N.; Luzi, G.; Fanti, R.; Gigli, G.; Leva, D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 2013, 40, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Milillo, P.; Giardina, G.; DeJong, M.J.; Perissin, D.; Milillo, G. Multi-temporal InSAR structural damage assessment: The London crossrail case study. Remote Sens. 2018, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Gernhardt, S.; Adam, N.; Eineder, M.; Bamler, R. Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Ann. Gis 2010, 16, 103–111. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Alpers, W.R.; Ross, D.B.; Rufenach, C.L. On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res. Ocean. 1981, 86, 6481–6498. [Google Scholar] [CrossRef]
- Paek, S.W.; Balasubramanian, S.; Kim, S.; de Weck, O. Small-satellite synthetic aperture radar for continuous global biospheric monitoring: A review. Remote Sens. 2020, 12, 2546. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O.; Cuevas, M.; Crippa, B. Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sens. 2011, 3, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Prati, C.; Ferretti, A.; Perissin, D. Recent advances on surface ground deformation measurement by means of repeated space-borne sar observations. J. Geodyn. 2010, 49, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Luo, S.; Fu, L.; Zhu, S.; He, Q.; Wan, W.; Yang, B. Processes of the displacement field change of the 2009 April 6 MW 6.3 L’Aquila earthquake using persistent scatterer and small baseline methods. Earthq. Sci. 2013, 26, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Nitti, D.O.; Fornaro, G.; Radicioni, F.; Stoppini, A.; Brigante, R. Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int. J. Remote Sens. 2013, 34, 4083–4104. [Google Scholar] [CrossRef]
- Sansosti, E.; Casu, F.; Manzo, M.; Lanari, R. Space-borne radar interferometry techniques for the generation of deformation time series: An advanced tool for earth’s surface displacement analysis. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Tizzani, P.; Battaglia, M.; Zeni, G.; Atzori, S.; Berardino, P.; Lanari, R. Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements. Geology 2009, 37, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Trasatti, E.; Casu, F.; Giunchi, C.; Pepe, S.; Solaro, G.; Tagliaventi, S.; Berardino, P.; Manzo, M.; Pepe, A.; Ricciardi, G.P.; et al. The 2004–2006 uplift episode at Campi Flegrei Caldera (Italy): Constraints from SBAS-DInSAR ENVISAT data and Bayesian source inference. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [Green Version]
- D’Aranno, P.; Di Benedetto, A.; Fiani, M.; Marsella, M. Remote sensing technologies for linear infrastructure monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 461–468. [Google Scholar]
- Głąbicki, D. Ground surface deformation monitoring of an active volcano using the DInSAR technique in comparison with GPS data: Case study of Okmok Volcano, Alaska. AIP Conf. Proc. 2020, 2209, 040004. [Google Scholar]
- Bakon, M.; Perissin, D.; Lazecky, M.; Papco, J. Infrastructure non-linear deformation monitoring via satellite radar interferometry. Procedia Technol. 2014, 16, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Shahzad, M.; Zhu, X.X. Reconstruction of individual trees from multi-aspect TomoSAR data. Remote Sens. Environ. 2015, 165, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Fornaro, G.; Lombardini, F.; Serafino, F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 702–714. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Y.; Zhang, Y.; Parcharidis, I.; Ma, P.; Xiao, R.; Xu, J.; Zhou, W.; Tang, P.; Foumelis, M. Surface motion and structural instability monitoring of Ming Dynasty City Walls by two-step Tomo-PSInSAR approach in Nanjing City, China. Remote Sens. 2017, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Lin, H. Robust detection of single and double persistent scatterers in urban built environments. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2124–2139. [Google Scholar] [CrossRef]
- Ying, W.; Qinfen, Z. Recognition of roads and bridges in SAR images. In Proceedings of the International Radar Conference, Alexandria, VA, USA, 8–11 May 1995; pp. 399–404. [Google Scholar]
- Terranova, C.; Ventura, G.; Vilardo, G. Multiple causes of ground deformation in the Napoli Metropolitan area (Italy) from integrated persistent scatterers DInSAR, geological, hydrological, and urban infrastructure data. Earth Sci. Rev. 2015, 146, 105–119. [Google Scholar] [CrossRef]
- Vilardo, G.; Ventura, G.; Terranova, C.; Matano, F.; Nardò, S. Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from permanent scatterers synthetic aperture radar interferometry. Remote Sens. Environ. 2009, 113, 197–212. [Google Scholar] [CrossRef]
- Budetta, P.; Nappi, M.; Santoro, S.; Scalese, G. Dinsar monitoring of the landslide activity affecting a stretch of motorway in the Campania Region of Southern Italy. Transp. Res. Procedia 2020, 45, 285–292. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Ding, X.; Liao, M.; Yang, M. Mapping and characterizing thermal dilation of civil infrastructures with multi-temporal X-band synthetic aperture radar interferometry. Remote Sens. 2018, 10, 941. [Google Scholar] [CrossRef] [Green Version]
- Budetta, P.; de Riso, R. Studio delle condizioni di stabilità di alcuni versanti in Roccia Nell’appennino Campano. Mem. Soc. Geol. It. 1988, 41, 917–927. [Google Scholar]
- ISPRA. IFFI—Inventario dei Fenomeni Franosi in Italia. Available online: https://www.progettoiffi.isprambiente.it/ (accessed on 22 July 2020).
- Regione Campania, Difesa del Suolo; Servizio di Consultazione dei Piani Stralcio per l’assetto Idrogeologico. Available online: http://www.difesa.suolo.regione.campania.it/component/option,com_pai/Itemid,70 (accessed on 6 January 2020).
- Wackernagel, H. Ordinary kriging. In Multivariate Geostatistics; Wackernagel, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 74–81. [Google Scholar]
- Getis, A.; Ord, J.K. Local Spatial Statistics: An Overview; Longley, P., Batty, M., Eds.; GeoInformation International: Cambridge, UK, 1996; pp. 261–277. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F.; Refice, A.; Nitti, D.O.; Nutricato, R. High resolution PSI for mapping ground deformations and infrastructure instability. In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Lan, H.; Li, L.; Liu, H.; Yang, Z. Complex urban infrastructure deformation monitoring using high resolution PSI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 643–651. [Google Scholar] [CrossRef]
- Guerriero, L.; Confuorto, P.; Calcaterra, D.; Guadagno, F.M.; Revellino, P.; Di Martire, D. Ps-driven inventory of town-damaging landslides in the Benevento, Avellino and Salerno Provinces, Southern Italy. J. Maps 2019, 15, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Amato, V.; Aucelli, P.P.C.; Corrado, G.; Di Paola, G.; Matano, F.; Pappone, G.; Schiattarella, M. Comparing geological and persistent scatterer interferometry data of the Sele river coastal plain, Southern Italy: Implications for recent subsidence trends. Geomorphology 2020, 351, 106953. [Google Scholar] [CrossRef]
- Matano, F. Analysis and classification of natural and human-induced ground deformations at Regional scale (Campania, Italy) detected by satellite synthetic-aperture radar interferometry archive datasets. Remote Sens. 2019, 11, 2822. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Wang, T. Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
Constellation | # Images | Temporal Coverage |
---|---|---|
ERS 1/2 | 66 | 1993–2000 |
ENVISAT | 49 | 2002–2008 |
COSMO-SkyMed | 78 | 2013–2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Aranno, P.J.V.; Di Benedetto, A.; Fiani, M.; Marsella, M.; Moriero, I.; Palenzuela Baena, J.A. An Application of Persistent Scatterer Interferometry (PSI) Technique for Infrastructure Monitoring. Remote Sens. 2021, 13, 1052. https://doi.org/10.3390/rs13061052
D’Aranno PJV, Di Benedetto A, Fiani M, Marsella M, Moriero I, Palenzuela Baena JA. An Application of Persistent Scatterer Interferometry (PSI) Technique for Infrastructure Monitoring. Remote Sensing. 2021; 13(6):1052. https://doi.org/10.3390/rs13061052
Chicago/Turabian StyleD’Aranno, Peppe J. V., Alessandro Di Benedetto, Margherita Fiani, Maria Marsella, Ilaria Moriero, and José Antonio Palenzuela Baena. 2021. "An Application of Persistent Scatterer Interferometry (PSI) Technique for Infrastructure Monitoring" Remote Sensing 13, no. 6: 1052. https://doi.org/10.3390/rs13061052
APA StyleD’Aranno, P. J. V., Di Benedetto, A., Fiani, M., Marsella, M., Moriero, I., & Palenzuela Baena, J. A. (2021). An Application of Persistent Scatterer Interferometry (PSI) Technique for Infrastructure Monitoring. Remote Sensing, 13(6), 1052. https://doi.org/10.3390/rs13061052