Two Independent Light Dilution Corrections for the SO2 Camera Retrieve Comparable Emission Rates at Masaya Volcano, Nicaragua
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup
2.2. Camera Analysis in Brief
2.3. Spectroscopy
2.4. Light Dilution and Correcting Spectra Analysis
2.5. Correct Optical Depth Images for Dilution
2.6. Extinction Light Dilution Correction
2.7. Plume Speed
2.8. Complementarity of SO2 Camera and Traverses
3. Results
3.1. Estimates of Scattering Efficiency from the Improved Image-Based Technique
3.2. SO2 Calibration and Column Density Images
3.3. Results from 13 January 2018
3.4. Results from 10 January 2018
3.5. Results from 15 January 2018
3.6. Cumulative Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malinconico, L.L. Fluctuations in SO2 emission during recent eruptions of Etna. Nature 1979, 278, 43. [Google Scholar] [CrossRef]
- Daag, A.S.; Tubianosa, B.S.; Newhall, C.; Tungol, N.; Javier, D.; Dolan, M.; Delos Reyes, P.; Arboleda, R.; Martinez, M.; Regalado, T. Monitoring Sulfur Dioxide Emission at Mount Pinatubo. Fire Mud: Erupt. Lahars Mt. Pinatubo Philipp. 1996, 409–414. Available online: https://www.researchgate.net/publication/283364456_Monitoring_sulphur_dioxide_emissions_at_Mount_Pinatubo_Philippines (accessed on 1 March 2021).
- Burton, M.; Allard, P.; Muré, F.; La Spina, A. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 2007, 317, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Symonds, R.B.; Rose, W.I.; Bluth, G.J.S.; Gerlach, T.M. Volcanic-gas studies—Methods, results, and applications. Volatiles Magmas 1994, 30, 1–66. [Google Scholar]
- Sigurdsson, H.; Houghton, B.; McNutt, S.; Rymer, H.; Stix, J. The Encyclopedia of Volcanoes; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Platt, U.; Bobrowski, N.; Butz, A. Ground-Based Remote Sensing and Imaging of Volcanic Gases and Quantitative Determination of Multi-Species Emission Fluxes. Geosciences 2018, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Burton, M.R.; Oppenheimer, C.; Horrocks, L.A.; Francis, P.W. Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology 2000, 28, 915–918. [Google Scholar] [CrossRef]
- Aiuppa, A.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Burton, M.; Caltabiano, T.; McGonigle, A.; Salerno, G.; Shinohara, H.; Valenza, M. Total volatile flux from Mount Etna. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Martin, R.; Sawyer, G.; Spampinato, L.; Salerno, G.; Ramirez, C.; Ilyinskaya, E.; Witt, M.; Mather, T.; Watson, I.; Phillips, J. A total volatile inventory for Masaya Volcano, Nicaragua. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- La Spina, A.; Burton, M.; Salerno, G.G. Unravelling the processes controlling gas emissions from the central and northeast craters of Mt. Etna. J. Volcanol. Geotherm. Res. 2010, 198, 368–376. [Google Scholar] [CrossRef]
- Aiuppa, A.; Cannata, A.; Cannavò, F.; Di Grazia, G.; Ferrari, F.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Mattia, M.; Montalto, P. Patterns in the recent 2007–2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef] [Green Version]
- Poland, M.P.; Miklius, A.; Sutton, A.J.; Thornber, C.R. A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007. Nat. Geosci. 2012, 5, 295–300. [Google Scholar] [CrossRef]
- Nadeau, P.A.; Werner, C.A.; Waite, G.P.; Carn, S.A.; Brewer, I.D.; Elias, T.; Sutton, A.J.; Kern, C. Using SO2 camera imagery and seismicity to examine degassing and gas accumulation at Kīlauea Volcano, May 2010. J. Volcanol. Geotherm. Res. 2015, 300, 70–80. [Google Scholar] [CrossRef]
- Salerno, G.G.; Burton, M.; Di Grazia, G.; Caltabiano, T.; Oppenheimer, C. Coupling between magmatic degassing and volcanic tremor in basaltic volcanism. Front. Earth Sci. 2018, 6, 157. [Google Scholar] [CrossRef]
- McGonigle, A.; Oppenheimer, C.; Galle, B.; Mather, T.; Pyle, D. Walking traverse and scanning DOAS measurements of volcanic gas emission rates. Geophys. Res. Lett. 2002, 29, 46-41–46-44. [Google Scholar] [CrossRef]
- Edmonds, M.; Herd, R.A.; Galle, B.; Oppenheimer, C.M. Automated, high time-resolution measurements of SO2 flux at Soufriere Hills Volcano, Montserrat. Bull. Volcanol. 2003, 65, 578–586. [Google Scholar] [CrossRef]
- Stix, J.; de Moor, J.M.; Rüdiger, J.; Alan, A.; Corrales, E.; D’Arcy, F.; Diaz, J.A.; Liotta, M. Using Drones and Miniaturized Instrumentation to Study Degassing at Turrialba and Masaya Volcanoes, Central America. J. Geophys. Res. Solid Earth 2018, 123, 6501–6520. [Google Scholar] [CrossRef]
- Salerno, G.; Burton, M.; Oppenheimer, C.; Caltabiano, T.; Randazzo, D.; Bruno, N.; Longo, V. Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses and uncertainties in flux retrieval. J. Volcanol. Geotherm. Res. 2009, 183, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Galle, B.; Johansson, M.; Rivera, C.; Zhang, Y.; Kihlman, M.; Kern, C.; Lehmann, T.; Platt, U.; Arellano, S.; Hidalgo, S. Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Elias, T.; Kern, C.; Horton, K.A.; Sutton, A.J.; Garbeil, H. Measuring SO2 Emission Rates at Kīlauea Volcano, Hawaii, Using an Array of Upward-Looking UV Spectrometers, 2014–2017. Front. Earth Sci. 2018, 6, 214. [Google Scholar] [CrossRef]
- Mori, T.; Burton, M. The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bluth, G.; Shannon, J.; Watson, I.; Prata, A.; Realmuto, V. Development of an ultra-violet digital camera for volcanic SO2 imaging. J. Volcanol. Geotherm. Res. 2007, 161, 47–56. [Google Scholar] [CrossRef]
- Burton, M.R.; Prata, F.; Platt, U. Volcanological applications of SO2 cameras. J. Volcanol. Geotherm. Res. 2015, 300, 2–6. [Google Scholar] [CrossRef]
- Kern, C.; Lübcke, P.; Bobrowski, N.; Campion, R.; Mori, T.; Smekens, J.-F.; Stebel, K.; Tamburello, G.; Burton, M.; Platt, U. Intercomparison of SO2 camera systems for imaging volcanic gas plumes. J. Volcanol. Geotherm. Res. 2015, 300, 22–36. [Google Scholar] [CrossRef]
- Mori, T.; Burton, M. Quantification of the gas mass emitted during single explosions on Stromboli with the SO2 imaging camera. J. Volcanol. Geotherm. Res. 2009, 188, 395–400. [Google Scholar] [CrossRef]
- Smekens, J.-F.; Burton, M.R.; Clarke, A.B. Validation of the SO2 camera for high temporal and spatial resolution monitoring of SO2 emissions. J. Volcanol. Geotherm. Res. 2015, 300, 37–47. [Google Scholar] [CrossRef]
- Smekens, J.-F.; Clarke, A.B.; Burton, M.R.; Harijoko, A.; Wibowo, H.E. SO2 emissions at Semeru volcano, Indonesia: Characterization and quantification of persistent and periodic explosive activity. J. Volcanol. Geotherm. Res. 2015, 300, 121–128. [Google Scholar] [CrossRef]
- Kern, C.; Sutton, J.; Elias, T.; Lee, L.; Kamibayashi, K.; Antolik, L.; Werner, C. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano’s summit Overlook Crater. J. Volcanol. Geotherm. Res. 2015, 300, 81–94. [Google Scholar] [CrossRef]
- Burton, M.; Salerno, G.; D’Auria, L.; Caltabiano, T.; Murè, F.; Maugeri, R. SO2 flux monitoring at Stromboli with the new permanent INGV SO2 camera system: A comparison with the FLAME network and seismological data. J. Volcanol. Geotherm. Res. 2015, 300, 95–102. [Google Scholar] [CrossRef]
- D’Aleo, R.; Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A. Spatially resolved SO2 flux emissions from Mt Etna. Geophys. Res. Lett. 2016, 43, 7511–7519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delle Donne, D.; Tamburello, G.; Aiuppa, A.; Bitetto, M.; Lacanna, G.; D’Aleo, R.; Ripepe, M. Exploring the explosive-effusive transition using permanent ultraviolet cameras. J. Geophys. Res. Solid Earth 2017, 122, 4377–4394. [Google Scholar] [CrossRef]
- Pering, T.; Tamburello, G.; McGonigle, A.; Aiuppa, A.; James, M.; Lane, S.J.; Sciotto, M.; Cannata, A.; Patanè, D. Dynamics of mild strombolian activity on Mt. Etna. J. Volcanol. Geotherm. Res. 2015, 300, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Kern, C.; Kick, F.; Lübcke, P.; Vogel, L.; Wöhrbach, M.; Platt, U. Theoretical description of functionality, applications, and limitations of SO2 cameras for the remote sensing of volcanic plumes. Atmos. Meas. Tech. 2010, 3, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Tamburello, G.; Aiuppa, A.; Kantzas, E.; McGonigle, A.; Ripepe, M. Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy). Earth Planet. Sci. Lett. 2012, 359, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Pering, T.D.; Ilanko, T.; Liu, E.J. Periodicity in Volcanic Gas Plumes: A Review and Analysis. Geosciences 2019, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Bobrowski, N.; Kern, C.; Platt, U.; Hörmann, C.; Wagner, T. Novel SO2 spectral evaluation scheme using the 360–390 nm wavelength range. Atmos. Meas. Tech. 2010, 3, 879–891. [Google Scholar] [CrossRef] [Green Version]
- Kern, C.; Deutschmann, T.; Vogel, L.; Wöhrbach, M.; Wagner, T.; Platt, U. Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bull. Volcanol. 2010, 72, 233–247. [Google Scholar] [CrossRef]
- Mori, T.; Mori, T.; Kazahaya, K.; Ohwada, M.; Hirabayashi, J.I.; Yoshikawa, S. Effect of UV scattering on SO2 emission rate measurements. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Kern, C.; Deutschmann, T.; Werner, C.; Sutton, A.J.; Elias, T.; Kelly, P.J. Improving the accuracy of SO2 column densities and emission rates obtained from upward-looking UV-spectroscopic measurements of volcanic plumes by taking realistic radiative transfer into account. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Nieves, J.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U. On the absolute calibration of SO2 cameras. Atmos. Meas. Tech. 2013, 6, 677–696. [Google Scholar] [CrossRef] [Green Version]
- Campion, R.; Delgado-Granados, H.; Mori, T. Image-based correction of the light dilution effect for SO2 camera measurements. J. Volcanol. Geotherm. Res. 2015, 300, 48–57. [Google Scholar] [CrossRef]
- Gliß, J.; Stebel, K.; Kylling, A.; Dinger, A.; Sihler, H.; Sudbø, A. Pyplis–a Python software toolbox for the analysis of SO2 camera images for emission rate retrievals from point sources. Geosciences 2017, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Varnam, M.; Burton, M.; Esse, B.; Kazahaya, R.; Salerno, G.; Caltabiano, T.; Ibarra, M. Quantifying Light Dilution in Ultraviolet Spectroscopic Measurements of Volcanic SO2 Using Dual-Band Modeling. Front. Earth Sci. 2020, 8, 468. [Google Scholar] [CrossRef]
- Ilanko, T.; Pering, T.D.; Wilkes, T.C.; Woitischek, J.; D’Aleo, R.; Aiuppa, A.; McGonigle, A.J.; Edmonds, M.; Garaebiti, E. Ultraviolet Camera Measurements of Passive and Explosive (Strombolian) Sulphur Dioxide Emissions at Yasur Volcano, Vanuatu. Remote Sens. 2020, 12, 2703. [Google Scholar] [CrossRef]
- Boichu, M.; Oppenheimer, C.; Tsanev, V.; Kyle, P.R. High temporal resolution SO2 flux measurements at Erebus volcano, Antarctica. J. Volcanol. Geotherm. Res. 2010, 190, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Kraus, S. DOASIS: A Framework Design for DOAS. Ph.D. Thesis, University of Mannheim, Mannheim, Germany, 2006. [Google Scholar]
- Danckaert, T.; Fayt, C.; Van Roozendael, M.; De Smedt, I.; Letocart, V.; Merlaud, A.; Pinardi, G. QDOAS Software User Manual, Belgian Institute for Space Aeronomy (BIRA-IASB): 2012. Available online: http://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf (accessed on 7 October 2020).
- Esse, B.; Burton, M.; Varnam, M.; Kazahaya, R.; Salerno, G. iFit: A simple method for measuring volcanic SO2 without a measured Fraunhofer reference spectrum. J. Volcanol. Geotherm. Res. 2020, 402, 107000. [Google Scholar] [CrossRef]
- Esse, B. iFit [Computer Software]. 2019. Available online: https://github.com/benjaminesse/iFit (accessed on 25 June 2020).
- Rufus, J.; Stark, G.; Smith, P.L.; Pickering, J.; Thorne, A. High-resolution photoabsorption cross section measurements of SO2, 2: 220 to 325 nm at 295 K. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Gorshelev, V.; Serdyuchenko, A.; Weber, M.; Chehade, W.; Burrows, J. High spectral resolution ozone absorption cross-sections–Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmos. Meas. Tech. 2014, 7, 609–624. [Google Scholar] [CrossRef] [Green Version]
- Grainger, J.; Ring, J. Anomalous Fraunhofer line profiles. Nature 1962, 193, 762. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy Principles and Applications Introduction. Differ. Opt. Absorpt. Spectrosc. Princ. Appl. 2008. [Google Scholar] [CrossRef]
- Penndorf, R. Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics. Josa 1957, 47, 176–182. [Google Scholar] [CrossRef]
- Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes. Atmos. Meas. Tech. 2011, 4, 1785–1804. [Google Scholar] [CrossRef] [Green Version]
- Ilanko, T.; Pering, T.D.; Wilkes, T.C.; Choquehuayta, F.E.A.; Kern, C.; Moreno, A.D.; De Angelis, S.; Layana, S.; Rojas, F.; Aguilera, F. Degassing at Sabancaya volcano measured by UV cameras and the NOVAC network. Volcanica 2019, 2, 239–252. [Google Scholar] [CrossRef]
- Weibring, P.; Swartling, J.; Edner, H.; Svanberg, S.; Caltabiano, T.; Condarelli, D.; Cecchi, G.; Pantani, L. Optical monitoring of volcanic sulphur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques. Opt. Lasers Eng. 2002, 37, 267–284. [Google Scholar] [CrossRef]
- Arellano, S.; Yalire, M.; Galle, B.; Bobrowski, N.; Dingwell, A.; Johansson, M.; Norman, P. Long-term monitoring of SO2 quiescent degassing from Nyiragongo’s lava lake. J. Afr. Earth Sci. 2017, 134, 866–873. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, N.; Hoffmann, A.; Barnie, T.; Herzog, M.; Oppenheimer, C. Use of motion estimation algorithms for improved flux measurements using SO2 cameras. J. Volcanol. Geotherm. Res. 2015, 300, 58–69. [Google Scholar] [CrossRef]
- Gliß, J.; Stebel, K.; Kylling, A.; Sudbø, A. Improved optical flow velocity analysis in SO2 camera images of volcanic plumes–implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile. Atmos. Meas. Tech. 2018, 11, 781–801. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Lübcke, P.; Bobrowski, N.; Kuhn, J.; Platt, U. Plume propagation direction determination with SO2 cameras. Atmos. Meas. Tech. 2017, 10, 979–987. [Google Scholar] [CrossRef]
- Lopez, T.; Aguilera, F.; Tassi, F.; De Moor, J.M.; Bobrowski, N.; Aiuppa, A.; Tamburello, G.; Rizzo, A.L.; Liuzzo, M.; Viveiros, F. New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop. Geosphere 2018, 14, 983–1007. [Google Scholar] [CrossRef] [Green Version]
- de Moor, J.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: The importance of accurate time-series data sets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions. Geochem. Geophys. Geosyst. 2017, 18, 4437–4468. [Google Scholar] [CrossRef]
- INETER. Boletín Anual de Enero a Diciembre 2017; Instituto Nicaragüense de Estudios Territoriales: Managua, Nicaragua, 2018. [Google Scholar]
- INETER. Boletín Anual Vulcanología 2018; Instituto Nicaragüense de Estudios Territoriales: Managua, Nicaragua, 2019. [Google Scholar]
- Zurek, J.; Moune, S.; Williams-Jones, G.; Vigouroux, N.; Gauthier, P.-J. Melt inclusion evidence for long term steady-state volcanism at Las Sierras-Masaya volcano, Nicaragua. J. Volcanol. Geotherm. Res. 2019, 378, 16–28. [Google Scholar] [CrossRef]
- Wilkes, T.C.; Pering, T.D.; McGonigle, A.J.S.; Willmott, J.R.; Bryant, R.; Smalley, A.L.; Mims, F.M., III; Parisi, A.V.; England, R.A. The PiSpec: A low-cost, 3D-printed spectrometer for measuring volcanic SO2 emission rates. Front. Earth Sci. 2019, 7, 65. [Google Scholar] [CrossRef]
- Pering, T.D.; Ilanko, T.; Wilkes, T.C.; England, R.A.; Silcock, S.R.; Stanger, L.R.; Willmott, J.R.; Bryant, R.G.; McGonigle, A.J. A rapidly convecting lava lake at Masaya Volcano, Nicaragua. Front. Earth Sci. 2019, 6, 241. [Google Scholar] [CrossRef]
Camera Average during Traverse Number | All Data | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Mean Exl. 2 | Full Average | |
Cell-calib./no LDC | 446 | - | 392 | 456 | 383 | 361 | 408 | 436 |
Cell-calib./extinction LDC | 781 | - | 669 | 779 | 654 | 617 | 700 | 617 |
Cell-calib./ image LDC | 1357 | - | 1033 | 1267 | 1034 | 1306 | 1199 | 1295 |
Traverse | 1037 | 954 | 1487 | 1056 | 1294 | 1065 | 1188 | 1149 |
Camera Average during Traverse Number | All Data | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Mean Exl. 1,2 | Full Average | |
Cell-calib./ no LDC | - | - | 583 | 750 | 524 | 756 | 653 | 589 |
Cell-calib./ extinction LDC | - | - | 904 | 1164 | 813 | 1087 | 992 | 889 |
Cell-calib./ image LDC | - | - | 1573 | 2072 | 1689 | 1788 | 1781 | 1662 |
Traverse | 1528 | 2091 | 1455 | 1126 | 2566 | 1802 | 1737 | 1761 |
Camera Average during Traverse Number | All Data | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Average from 10:55 | Average | |
Cell-calib./ no LDC | 736 | 540 | - | 645 | 772 | 750 |
Cell-calib./ extinction LDC | 1201 | 881 | - | 1278 | 1448 | 1376 |
Cell-calib./ image LDC | 1846 | 1257 | - | 1914 | 1757 | 1709 |
Spec.-calib./ no LDC | - | - | - | 254 | 384 | 384 |
Spec.-calib./ dual-wav LDC | - | - | - | 1773 | 1802 | 1802 |
Spec.-calib./ dual-wav LDC + image LDC | - | - | - | 1730 | 1722 | 1722 |
Traverse | 1459 | 1186 | 2377 | 1637 | 2007 | 1665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnam, M.; Burton, M.; Esse, B.; Salerno, G.; Kazahaya, R.; Ibarra, M. Two Independent Light Dilution Corrections for the SO2 Camera Retrieve Comparable Emission Rates at Masaya Volcano, Nicaragua. Remote Sens. 2021, 13, 935. https://doi.org/10.3390/rs13050935
Varnam M, Burton M, Esse B, Salerno G, Kazahaya R, Ibarra M. Two Independent Light Dilution Corrections for the SO2 Camera Retrieve Comparable Emission Rates at Masaya Volcano, Nicaragua. Remote Sensing. 2021; 13(5):935. https://doi.org/10.3390/rs13050935
Chicago/Turabian StyleVarnam, Matthew, Mike Burton, Ben Esse, Giuseppe Salerno, Ryunosuke Kazahaya, and Martha Ibarra. 2021. "Two Independent Light Dilution Corrections for the SO2 Camera Retrieve Comparable Emission Rates at Masaya Volcano, Nicaragua" Remote Sensing 13, no. 5: 935. https://doi.org/10.3390/rs13050935
APA StyleVarnam, M., Burton, M., Esse, B., Salerno, G., Kazahaya, R., & Ibarra, M. (2021). Two Independent Light Dilution Corrections for the SO2 Camera Retrieve Comparable Emission Rates at Masaya Volcano, Nicaragua. Remote Sensing, 13(5), 935. https://doi.org/10.3390/rs13050935