The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset
Abstract
:1. Introduction
2. Study Area and Data
2.1. Central Asia
2.2. Data
2.2.1. Monthly Landsat -Derived Surface Water Dataset
2.2.2. HydroLAKES Dataset
3. Method
3.1. Identifying Lakes
3.2. Lakes Change Analysis
4. Results
4.1. Number and Area of Lakes in Central Asia
4.2. Number and Area Change of the Lakes in Central Asia
4.2.1. Change in Number of Lakes
4.2.2. Area Change of Lakes
4.2.3. Spatio–Temporal Change of Lakes
4.3. Aral Sea and Tengiz Lake
4.3.1. Yearly Changes
4.3.2. Monthly Changes
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote. Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- George, G.; Hurley, M.; Hewitt, D. The impact of climate change on the physical characteristics of the larger lakes in the English Lake District. Freshw. Biol. 2007, 52, 1647–1666. [Google Scholar] [CrossRef]
- Hampton, S.E.; Izmest’Eva, L.R.; Moore, M.V.; Katz, S.L.; Dennis, B.; Silow, E.A. Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Glob. Chang. Biol. 2008, 14, 1947–1958. [Google Scholar] [CrossRef] [Green Version]
- Lennox, B.; Spooner, I.; Jull, T.; Patterson, W.P. Post-glacial climate change and its effect on a shallow dimictic lake in Nova Scotia, Canada. J. Paleolimnol. 2009, 43, 15–27. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid. Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef]
- Zafarnejad, F. The contribution of dams to Iran’s desertification. Int. J. Environ. Stud. 2009, 66, 327–341. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, F.; Wang, J.; Li, Y.; Hu, R. Characteristics of the Eco-geographical Pattern in Arid Land of Central Asia. Arid Zone Res. 2013, 30, 385–390. [Google Scholar]
- Kazakhstan, U. Water Resources of Kazakhstan in the New Millennium; UNDP: Almaty, Republic of Kazakhstan, 2004. [Google Scholar]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Harris, A.R.; Mason, I.M. Lake area measurement using AVHRR A case study. Int. J. Remote Sens. 1989, 10, 885–895. [Google Scholar] [CrossRef]
- Carroll, M.; Townshend, J.; DiMiceli, C.; Noojipady, P.; Sohlberg, R. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J.; Li, L.; Liu, R. An evaluation of Suomi NPP-VIIRS data for surface water detection. Remote Sens. Lett. 2015, 6, 155–164. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.-M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Nitze, I.; Grosse, G.; Jones, B.M.; Arp, C.D.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Meng, X.; Zhu, D.; Zheng, D.; Qiao, Z.; Yang, C.; Han, J.; Yu, J.; Meng, Q.; Lü, R. Characteristics of the change of major lakes on the Qinghai-Tibet Plateau in the last 25 years. Front. Earth Sci. China 2008, 2, 364–377. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Feng, S.; Liu, S.; Huang, Z.; Jing, L.; Zhao, M.; Peng, X.; Yan, W.; Wu, Y.; Lv, Y.; Smith, A.R.; et al. Inland water bodies in China: Features discovered in the long-term satellite data. Proc. Natl. Acad. Sci. USA 2019, 116, 25491–25496. [Google Scholar]
- François, S. Testing the Global Surface Water Dataset for Canada, Forum of Experts in SEEA Experimental Ecosystem Ac-Counting 2018; Statistics Canada: Glen Cove, NY, USA, June 2018.
- Che, X.; Feng, M.; Sexton, J.; Channan, S.; Sun, Q.; Ying, Q.; Liu, J.; Wang, Y. Landsat-Based Estimation of Seasonal Water Cover and Change in Arid and Semi-Arid Central Asia (2000–2015). Remote Sens. 2019, 11, 1323. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS obser-vations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Gong, P. Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery. Geoinformatics 2007 2007, 6752, 675218. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Campos, J.C.; Sillero, N.; Brito, J.C. Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara–Sahel transition zone. J. Hydrol. 2012, 464–465, 438–446. [Google Scholar] [CrossRef]
- Chen, C.; Fu, W.; Hu, Z.; Li, X. Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology. Remote Sens. Land Resour. 2015, 27, 146–152. [Google Scholar]
- Wu, J.; Mang, L.; Ji, L. Lake surface change of the Aral Sea and its environmental effects in the arid region of the central asia. Arid Land Geogr. 2009, 32, 418–422. [Google Scholar]
- Yan, Q.; Liao, J.; Shen, G. Remote sensing analysis and simulation of change of Ulan Ul Lake in the past 40 years. Remote Sens. Land Resour. 2014, 26, 152–157. [Google Scholar]
- Liu, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhang, Q. Recent Lake Area Changes in Central Asia. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- De Pauw, E. ICARDA regional GIS datasets for Central Asia: Explanatory notes. In GIS Unit Technical Bulletin; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 2008. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar]
- Andreev, N.I.; Plotnikov, I.S.; Aladin, N.V. The fauna of the Aral Sea in the zooplankton. Int. J. Salt Lake Res. 1992, 1, 111–116. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Slater, J.A.; Garvey, G.; Johnston, C.; Haase, J.; Heady, B.; Kroenung, G.; Little, J. The SRTM Data “Finishing” Process and Products. Photogramm. Eng. Remote Sens. 2006, 72, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Li, H.; Wan, W.; Zhu, S.; Wang, Z.; Hong, Y.; Wang, H. Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades. Remote Sens. 2019, 11, 1467. [Google Scholar]
- Meyer, M.F.; Labou, S.G.; Cramer, A.N.; Brousil, M.R.; Luff, B.T. The global lake area, climate, and population dataset. Sci. Data 2020, 7, 174. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, B.; Wan, W.; Xie, H.; Fang, Y.; Chen, X.; Li, H.; Fang, W.; Zhang, G.; Tao, M.; et al. A New Digital Lake Bathymetry Model Using the Step-Wise Water Recession Method to Generate 3D Lake Bathymetric Maps Based on DEMs. Water 2019, 11, 1151. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Lerman, A.; Imboden, D.M.; Gat, J.; Chou, L. Physics and Chemistry of Lakes; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- McDonald, C.P.; Rover, J.A.; Stets, E.G.; Striegl, R.G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 2012, 57, 597–606. [Google Scholar] [CrossRef]
- Bernhard, L.; Mathis, M. HydroLAKES, Technical Documentation Version 1.0. Available online: http://www.hydrosheds.org/images/inpages/HydroLAKES_TechDoc_v10.pdf (accessed on 31 December 2016).
- Ghalhari, G.F.; Dastjerdi, J.K.; Nokhandan, M.H. Using Mann Kendal and t-test methods in identifying trends of climatic elements: A case study of northern parts of Iran. Manag. Sci. Lett. 2012, 2, 911–920. [Google Scholar] [CrossRef]
- Birkett, C.M.; Mason, I.M. A New Global Lakes Database for a Remote Sensing Program Studying Climatically Sensitive Large Lakes. J. Great Lakes Res. 1995, 21, 307–318. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring variations of inland lakes in the arid region of Central Asia. Front. Earth Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Eisfelder, C.; Klein, I.; Niklaus, M.; Kuenzer, C. Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables. J. Arid. Environ. 2014, 103, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Kienzler, K.; Martius, C.; Mirzabaev, A.; Oweis, T.; De Pauw, E.; Qadir, M.; Shideed, K.; Sommer, R.; Thomas, R. Research Prospectus: A vision for Sustainable Land Management Research in Central Asia; ICARDA Central Asia and Caucasus Program. Sustainable Agriculture in Central Asia and the Caucasus Series; CGIAR-PFU: Tashkent, Uzbekistan, 2009; Volume 1, p. 84. [Google Scholar]
- Lins, H.F. Challenges to Hydrological Observations. In WMO Bulletin; WMO: Geneva, Switzerland, 2008; Volume 57, pp. 55–58. [Google Scholar]
- Fortin, V.; Roy, G.; Donaldson, N.; Mahidjiba, A. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA). J. Hydrol. 2015, 531, 296–307. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J. ERA5-Land: A New State-Of-The-Art Global Land Surface Reanalysis Dataset. In Proceedings of the 31st Conference on Hydrology—2017 AMS Annual Meeting, Seattle, WA, USA, 21–23 June 2017. [Google Scholar]
- Zavialov, P.O. Physical Oceanography of the Dying Aral Sea; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Roget, E.; Zavialov, P.; Khan, V.; Muñiz, M.A. Geodynamical processes in the channel connecting the two lobes of the Large Aral Sea. Hydrol. Earth Syst. Sci. 2009, 13, 2265–2271. [Google Scholar] [CrossRef]
- Massakbayeva, A.; Abuduwaili, J.; Bissenbayeva, S.; Issina, B.; Smanov, Z. Water balance of the Small Aral Sea. Environ. Earth Sci. 2020, 79, 75. [Google Scholar] [CrossRef]
- Engel, K. State and local climate change initiatives: What is motivating state and local governments to address a global problem and what does this say about federalism and environmental law. Urb. Law. 2006, 38, 1015. [Google Scholar]
- Singh, A.; Seitz, F.; Schwatke, C. Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote. Sens. Environ. 2012, 123, 187–195. [Google Scholar] [CrossRef]
- ICWC, S. Scientific-Information Center, Interstate Commission for Water Coordination in Central Asia (SIC ICWC), United Nations Economic Commission for Europe (UNECE), Central Asian Regional Environmental Center (CAREC), Water quality in the amudarya and syrdarya river basins. Anal. Rep. Tashkent 2011, 77. Available online: http://www.cawater-info.net/water_quality_in_ca/files/analytic_report_en.pdf (accessed on 16 December 2012).
- Micklin, P.P. The Aral Sea Crisis. In Dying and Dead Seas Climatic Versus Anthropic Causes; Springer: Dordrecht, The Netherlands, 2004; pp. 99–123. [Google Scholar]
- Dietz, A.J.; Kuenzer, C.; Conrad, C. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int. J. Remote Sens. 2013, 34, 3879–3902. [Google Scholar] [CrossRef]
- Zhou, H.; Aizen, E.; Aizen, V. Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sens. Environ. 2013, 136, 146–162. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Kuzmichenok, V.A. Geo-informational simulation of possible changes in Central Asian water re-sources. Glob. Planet. Chang. 2007, 56, 341–358. [Google Scholar]
- Long, A.; Deng, M.; Xie, L.; Li, X.-Q.; Wang, J.-Y.; Su, H.-C.; Wu, S.-F. Exploring analysis on the adaptive countermeasures to water resources evolvement under the climate change in Xinjiang and Aral Sea Basin. Arid Land Geogr. 2012, 35, 377–387. [Google Scholar]
- Hagg, W.; Hoelzle, M.; Wagner, S.; Mayr, E.; Klose, Z. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until. Glob. Planet. Chang. 2013, 110, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Gilad, U.; Ponzet, M.; Svoray, T.; Mirzadinov, R.; Fedorina, O. Assessing land-cover change and degradation in the Central Asian deserts using satellite image processing and geostatistical methods. J. Arid. Environ. 2008, 72, 2093–2105. [Google Scholar] [CrossRef]
- Mannig, B.; Müller, M.; Starke, E.; Merkenschlager, C.; Mao, W.; Zhi, X.; Podzun, R.; Jacob, D.; Paeth, H. Dynamical downscaling of climate change in Central Asia. Glob. Planet. Chang. 2013, 110, 26–39. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth observing satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Aladin, N.V.; Plotnikov, I.S. Large saline lakes of former USSR: A summary review. Hidrobiológica 1993, 267, 1–12. [Google Scholar] [CrossRef]
- Luojus, K.; Pulliainen, J.; Takala, M.; Lemmetyinen, J.; Derksen, C.; Wang, L. Snow water equivalent (SWE) product guide. European Space Agency Study Contract Report, ESRIN Contract 21703/08/I-EC. Glob. Snow Monit. Clim. Res. 2010, 1. [Google Scholar]
- Zhang, G.; Yao, T.; Piao, S.; Bolch, T.; Xie, H.; Chen, D.; Gao, Y.; O’Reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Zhang, K.; Zhu, F. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.R.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Ding, X.; Song, C. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ. 2015, 168, 13–23. [Google Scholar] [CrossRef]
- Bartee, L.; Shriner, W.; Creech, C. Climate and the Effects of Global Climate Change. Princ. Biol. 2017, 211–213. Available online: https://openoregon.pressbooks.pub/mhccmajorsbio/chapter/climate-and-the-effects-of-global-climate-change (accessed on 10 November 2017).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Bargellini, P. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar]
Original Dataset | Region | Original Format and Resolution |
---|---|---|
Shuttle Radar Topographic Mission (SRTM) Water Body Data (SWBD) | 56°S to 60°N | Raster; 1 arc-second (~30 m at the equator) |
MODerate resolution Imaging Spectro-radiometer (MODIS) MOD44W water mask | Russia above 60°N | Raster; 250 m |
European Catchments and Rivers Network System (ECRINS) | Europe above 60°N and the entirety of Norway | Vector; varying resolutions (~1:250,000) |
Global Lakes and Wetlands Database (GLWD) | World | Vector; 1:1 million |
Global Reservoir and Dam database (GRanD) | World | Vector; varying resolutions (1:1 million) |
Other | World | Vector; varying resolutions (1:1 million or better) |
Ecological Zone | Density (/1000 km2) | |
---|---|---|
Number | Area | |
Badghyz and Karabil semi-desert | 1.22 | 8.95 |
Tarim Basin deciduous forests and steppe | 1.52 | 5.30 |
Kazakh steppe | 6.10 | 13.31 |
Tibetan Plateau alpine steppe | 0.52 | 9.94 |
Tian Shan montane steppe and meadow | 0.81 | 7.79 |
Central Asian riparian wetland | 3.16 | 221.96 |
Rock and Ice | 0.09 | 0.11 |
All zones | 1.95 | 18.78 |
Categories (km2) | 0–1 | 1–10 | 10–50 | 50–100 | 100–500 | >500 |
---|---|---|---|---|---|---|
2000 | 5382 | 1567 | 274 | 37 | 32 | 17 |
2001 | 5221 | 1702 | 274 | 33 | 35 | 16 |
2002 | 5517 | 1968 | 332 | 43 | 33 | 18 |
2003 | 5512 | 1880 | 310 | 44 | 36 | 17 |
2004 | 5361 | 1687 | 294 | 39 | 35 | 17 |
2005 | 5368 | 1819 | 312 | 40 | 39 | 17 |
2006 | 5131 | 1543 | 271 | 40 | 35 | 17 |
2007 | 5393 | 1761 | 305 | 38 | 38 | 17 |
2008 | 5039 | 1510 | 280 | 35 | 35 | 17 |
2009 | 4890 | 1471 | 260 | 37 | 35 | 16 |
2010 | 5141 | 1366 | 261 | 40 | 38 | 16 |
2011 | 5061 | 1464 | 267 | 33 | 32 | 17 |
2012 | 4925 | 1470 | 261 | 36 | 36 | 15 |
2012 | 4879 | 1493 | 259 | 40 | 32 | 15 |
2014 | 4483 | 1325 | 233 | 38 | 27 | 16 |
2015 | 4832 | 1404 | 260 | 43 | 29 | 17 |
Slope(/year) | –50.67 | –30.23 | –3.66 | –0.01 | –0.28 | –0.09 |
Rate (%) | −0.99 | −1.90 | −1.32 | −0.02 | −0.81 | −0.52 |
Lake Type | Slope (km2/year) | Rate (%) | R2 |
---|---|---|---|
0–1 | −21.07 | −1.42 | 0.54 * |
1–10 | −78.41 | −1.66 | 0.53 * |
10–50 | −85.09 | −1.51 | 0.47 * |
50–100 | −11.29 | −0.43 | 0.04 |
100–500 | −34.14 | −0.42 | 0.07 |
>500 | −1048.99 | −1.53 | 0.91 * |
Terrestrial Ecological Zones | Rate (%/year) | |||||||
---|---|---|---|---|---|---|---|---|
−36–−20 | −20–−10 | −10– −1 | −1– 0 | 0– 1 | 1– 10 | 10– 20 | 20– 36 | |
Badghyz and Karabil semi-desert | 262 | 632 | 1212 | 251 | 142 | 402 | 131 | 112 |
Tarim Basin deciduous forests and steppe | 7 | 19 | 25 | 4 | 3 | 19 | 6 | 0 |
Kazakh steppe | 283 | 747 | 2076 | 624 | 252 | 500 | 108 | 62 |
Tibetan Plateau alpine steppe | 4 | 12 | 22 | 18 | 21 | 49 | 4 | 2 |
Tian Shan montane steppe and meadow | 30 | 48 | 308 | 153 | 81 | 128 | 29 | 23 |
Central Asian riparian wetland | 41 | 82 | 228 | 52 | 49 | 110 | 63 | 55 |
Rock and Ice | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
All zones | 627 | 1540 | 3872 | 1103 | 548 | 1208 | 341 | 254 |
Month | Aral Sea | North Aral Sea | West Basin | East Basin | Tengiz Lake | |||||
---|---|---|---|---|---|---|---|---|---|---|
Slope | R2 | Slope | R2 | Slope | R2 | Slope | R2 | Slope | R2 | |
April | −1004.10 | 0.89 * | 32.68 | 0.77 * | −187.08 | 0.98 * | −849.70 | 0.87 * | −32.80 | 0.67 * |
May | −1145.83 | 0.91 * | 33.91 | 0.73 * | −187.25 | 0.98 * | −992.49 | 0.89 * | −32.03 | 0.66 * |
June | −1184.49 | 0.92 * | 39.10 | 0.75 * | −186.78 | 0.98 * | −1036.81 | 0.90 * | −29.67 | 0.55 * |
July | −1193.69 | 0.92 * | 39.74 | 0.69 * | −186.62 | 0.97 * | −1046.81 | 0.90 * | −28.18 | 0.51 * |
August | −1156.81 | 0.89 * | 42.02 | 0.73 * | −186.55 | 0.97 * | −1012.28 | 0.87 * | −28.06 | 0.48 * |
September | −1112.19 | 0.86 * | 41.73 | 0.72 * | −185.63 | 0.97 * | −968.29 | 0.83 * | −29.46 | 0.46 |
October | −1106.29 | 0.85 * | 39.83 | 0.73 * | −184.81 | 0.97 * | −961.31 | 0.82 * | −29.50 | 0.45 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, X.; Feng, M.; Sun, Q.; Sexton, J.O.; Channan, S.; Liu, J. The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset. Remote Sens. 2021, 13, 1032. https://doi.org/10.3390/rs13051032
Che X, Feng M, Sun Q, Sexton JO, Channan S, Liu J. The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset. Remote Sensing. 2021; 13(5):1032. https://doi.org/10.3390/rs13051032
Chicago/Turabian StyleChe, Xianghong, Min Feng, Qing Sun, Joseph O. Sexton, Saurabh Channan, and Jiping Liu. 2021. "The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset" Remote Sensing 13, no. 5: 1032. https://doi.org/10.3390/rs13051032
APA StyleChe, X., Feng, M., Sun, Q., Sexton, J. O., Channan, S., & Liu, J. (2021). The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset. Remote Sensing, 13(5), 1032. https://doi.org/10.3390/rs13051032