The Temporal Variation of Optical Depth in the Candidate Landing Area of China’s Mars Mission (Tianwen-1)
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of Dataset
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.Q.; Richardson, M.I. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 2015, 251, 112–127. [Google Scholar] [CrossRef]
- Metzger, S.M.; Carr, J.R.; Johnson, J.R.; Parker, T.J.; Lemmon, M.T. Dust devil vortices seen by the Mars Pathfinder Camera. Geophys. Res. Lett. 1999, 26, 2781–2784. [Google Scholar] [CrossRef]
- Towner, M.C. Characteristics of large Martian dust devils using Mars Odyssey Thermal Emission Imaging System visual and infrared images. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Landis, G.A. Dust obscuration of Mars solar arrays. Acta Astronaut. 1996, 38, 885–891. [Google Scholar] [CrossRef]
- Navarro, T.; Forget, F.; Millour, E.; Greybush, S.J.; Kalnay, E.; Miyoshi, T. The Challenge of Atmospheric Data Assimilation on Mars. Earth Space Sci. 2017, 4, 690–722. [Google Scholar] [CrossRef] [Green Version]
- Greybush, S.J.; Wilson, R.J.; Hoffman, R.N.; Hoffman, M.J.; Miyoshi, T.; Ide, K.; McConnochie, T.; Kalnay, E. Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Tomasko, M.G.; Doose, L.R.; Lemmon, M.T.; Smith, P.H.; Wegryn, E. Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. Planets 1999, 104, 8987–9007. [Google Scholar] [CrossRef]
- Whelley, P.L.; Greeley, R. The distribution of dust devil activity on Mars. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 2004, 167, 148–165. [Google Scholar] [CrossRef]
- Vincendon, M.; Langevin, Y.; Poulet, F.; Pommerol, A.; Wolff, M.; Bibring, J.P.; Gondet, B.; Jouglet, D. Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits. Icarus 2009, 200, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D. THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 2009, 202, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D. THEMIS Observations of the 2018 Mars Global Dust Storm. J. Geophys. Res. Planets 2019, 124. [Google Scholar] [CrossRef]
- Hoekzema, N.M.; Garcia-Comas, M.; Stenzel, O.J.; Petrova, E.V.; Thomas, N.; Markiewicz, W.J.; Gwinner, K.; Keller, H.U.; Delamere, W.A. Retrieving optical depth from shadows in orbiter images of Mars. Icarus 2011, 214, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.J.; Lewis, S.R.; Cantor, B.; Kass, D.; Kleinbohl, A.; Lemmon, M.T.; Smith, M.D.; et al. Eight-year climatology of dust optical depth on Mars. Icarus 2015, 251, 65–95. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, M.T.; Wolff, M.J.; Smith, M.D.; Clancy, R.T.; Banfield, D.; Landis, G.A.; Ghosh, A.; Smith, P.H.; Spanovich, N.; Whitney, B.; et al. Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 2004, 306, 1753–1756. [Google Scholar] [CrossRef]
- Lemmon, M.T.; Wolff, M.J.; Bell, J.F.; Smith, M.D.; Cantor, B.A.; Smith, P.H. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 2015, 251, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Pollack, J.B.; Colburn, D.; Kahn, R.; Hunter, J.; Van Camp, W.; Carlston, C.E.; Wolf, M.R. Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data. J. Geophys. Res. 1977, 82, 4479–4496. [Google Scholar] [CrossRef]
- Smith, P.H.; Lemmon, M. Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. Planets 1999, 104, 8975–8985. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.P. Map projections—A working manual. In U.S. Geological Survey Professional Paper 1395; U.S. Government Printing Office: Washington, DC, USA, 1987. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Anderson, R.C.; Bartlett, P.; Bell, J.F.; Blaney, D.; Christensen, P.R.; Chu, P.; Crumpler, L.; Davis, K.; Ehlmann, B.L.; et al. Localization and physical properties experiments conducted by Spirit at Gusev crater. Science 2004, 305, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.F.; Squyres, S.W.; Herkenhoff, K.E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; et al. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Clancy, R.T.; Sandor, B.J.; Wolff, M.J.; Christensen, P.R.; Smith, M.D.; Pearl, J.C.; Conrath, B.J.; Wilson, R.J. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. Planets 2000, 105, 9553–9571. [Google Scholar] [CrossRef]
- Ye, P.J.; Sun, Z.Z.; Rao, W.; Meng, L.Z. Mission overview and key technologies of the first Mars probe of China. Sci. China Technol. Sci. 2017, 60, 649–657. [Google Scholar] [CrossRef]
- McEwen, A.S.; Soderblom, L.A.; Becker, T.L.; Lee, E.M.; Swann, J.D.; Aeschliman, R.; Batson, R.M. Global Color Views of Mars. In Proceedings of the 25th Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 1994; p. 871. [Google Scholar]
- McCleese, D.J.; Heavens, N.G.; Schofield, J.T.; Abdou, W.A.; Bandfield, J.L.; Calcutt, S.B.; Irwin, P.G.; Kass, D.M.; Kleinbohl, A.; Lewis, S.R.; et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Smith, M.D.; Wolff, M.J.; Clancy, R.T.; Kleinbohl, A.; Murchie, S.L. Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. Planets 2013, 118, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Battalio, M.; Wang, H.Q. The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences. Icarus 2021, 354, 114059. [Google Scholar] [CrossRef]
- Wan, W.X.; Wang, C.; Li, C.L.; Wei, Y. China’s first mission to Mars. Nat. Astron. 2020, 4, 721. [Google Scholar] [CrossRef]
- Li, C.L.; Liu, J.J.; Geng, Y.; Cao, J.B.; Zhang, T.L.; Fang, G.Y.; Yang, J.F.; Shu, R.; Zou, Y.L.; Lin, Y.T.; et al. Scientific Objectives and Payload Configuration of China’s First Mars Exploration Mission. J. Deep Space Explor. 2018, 5, 406–413. (In Chinese) [Google Scholar] [CrossRef]
- Zou, Y.L.; Zhu, Y.; Bai, Y.F.; Wang, L.G.; Jia, Y.Z.; Shen, W.H.; Fan, Y.; Liu, Y.; Wang, C.; Zhang, A.B.; et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Adv. Space Res. 2021, 67, 812–823. [Google Scholar] [CrossRef]
Study Area | Product ID | Observation Time | Martian Year (MY) | Solar Longitude (Ls) |
---|---|---|---|---|
The inspection area of the Spirit rover | PSP_006524_1650_RED | 2007-12-17 | 29 | 4.0 |
PSP_006735_1650_RED | 2008-01-03 | 29 | 12.0 | |
PSP_007737_1670_RED | 2008-03-21 | 29 | 48.0 | |
PSP_007816_1665_RED | 2008-03-27 | 29 | 50.7 | |
PSP_008317_1665_RED | 2008-05-05 | 29 | 67.8 | |
PSP_008528_1660_RED | 2008-05-21 | 29 | 75.0 | |
PSP_008963_1650_RED | 2008-06-24 | 29 | 89.9 | |
PSP_009174_1650_RED | 2008-07-11 | 29 | 97.1 | |
PSP_009319_1650_RED | 2008-07-22 | 29 | 102.2 | |
PSP_009385_1655_RED | 2008-07-27 | 29 | 104.5 | |
PSP_009741_1655_RED | 2008-08-24 | 29 | 117.2 | |
PSP_009886_1655_RED | 2008-09-04 | 29 | 122.5 | |
PSP_010097_1655_RED | 2008-09-21 | 29 | 130.3 | |
ESP_011587_1655_RED | 2009-01-15 | 29 | 191.8 | |
ESP_011943_1650_RED | 2009-02-12 | 29 | 208.3 | |
ESP_012787_1650_RED | 2009-04-18 | 29 | 249.4 | |
ESP_012932_1650_RED | 2009-04-30 | 29 | 256.6 | |
ESP_013499_1650_RED | 2009-06-13 | 29 | 284.3 | |
ESP_013855_1650_RED | 2009-07-11 | 29 | 301.2 | |
ESP_013921_1650_RED | 2009-07-16 | 29 | 304.2 | |
ESP_014277_1650_RED | 2009-08-12 | 29 | 320.3 | |
The study area (part of the candidate landing area of Tianwen-1) | PSP_005721_2090_RED | 2007-10-16 | 28 | 331.5 |
PSP_006776_2070_RED | 2008-01-06 | 29 | 13.6 | |
PSP_007422_2085_RED | 2008-02-25 | 29 | 37.0 | |
PSP_007501_2065_RED | 2008-03-02 | 29 | 39.7 | |
PSP_007791_2090_RED | 2008-03-25 | 29 | 49.8 | |
PSP_008503_2045_RED | 2008-05-20 | 29 | 74.1 | |
ESP_017852_2080_RED | 2010-05-18 | 30 | 92.4 | |
ESP_024656_2085_RED | 2011-10-30 | 31 | 22.7 | |
ESP_027557_2075_RED | 2012-06-12 | 31 | 123.9 | |
ESP_045359_2075_RED | 2016-03-30 | 33 | 130.2 | |
ESP_048049_2060_RED | 2016-10-26 | 33 | 249.2 | |
ESP_054800_2075_RED | 2018-04-05 | 34 | 154.5 | |
ESP_054866_2085_RED | 2018-04-10 | 34 | 157.2 | |
ESP_057649_2055_RED | 2018-11-13 | 34 | 287.5 | |
ESP_057728_2090_RED | 2018-11-19 | 34 | 291.3 | |
ESP_058137_2090_RED | 2018-12-21 | 34 | 310.3 | |
ESP_064163_2085_RED | 2020-04-04 | 35 | 177.5 | |
ESP_064229_2085_RED | 2020-04-09 | 35 | 180.4 | |
ESP_066049_2080_RED | 2020-08-29 | 35 | 267.3 |
Optical Cameras | The Main Technical Parameters | |
---|---|---|
HiRIC | Spectral bands | Panchromatic: 450–900 nm |
Color: blue 450–520 nm, green 520–600 nm, red 630–690 nm, near-infrared 760–900 nm | ||
Resolution (at 265 km orbit altitude) | Panchromatic: better than 2.5 m, better than 0.5 m in key areas | |
Color: better than 10 m, better than 2.0 m in key areas | ||
Imaging width | 9 km @ 265 km | |
MoRIC | Spectral range | visible spectrum (430–690 nm) |
Resolution | better than 100 m @ 400 km | |
Imaging width | 400 km @ 400 km orbit altitude |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Liu, J.; Wang, X.; Ren, X.; Yan, W.; Chen, W. The Temporal Variation of Optical Depth in the Candidate Landing Area of China’s Mars Mission (Tianwen-1). Remote Sens. 2021, 13, 1029. https://doi.org/10.3390/rs13051029
Tang Z, Liu J, Wang X, Ren X, Yan W, Chen W. The Temporal Variation of Optical Depth in the Candidate Landing Area of China’s Mars Mission (Tianwen-1). Remote Sensing. 2021; 13(5):1029. https://doi.org/10.3390/rs13051029
Chicago/Turabian StyleTang, Zhencheng, Jianjun Liu, Xing Wang, Xin Ren, Wei Yan, and Wangli Chen. 2021. "The Temporal Variation of Optical Depth in the Candidate Landing Area of China’s Mars Mission (Tianwen-1)" Remote Sensing 13, no. 5: 1029. https://doi.org/10.3390/rs13051029
APA StyleTang, Z., Liu, J., Wang, X., Ren, X., Yan, W., & Chen, W. (2021). The Temporal Variation of Optical Depth in the Candidate Landing Area of China’s Mars Mission (Tianwen-1). Remote Sensing, 13(5), 1029. https://doi.org/10.3390/rs13051029