The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture
Abstract
:1. Introduction
- The AgriSAR 2006 campaign was conducted over the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) agricultural site in Germany recorded C- and L-band SAR observations and multispectral images in preparation of Sentinel-1 and Sentinel-2 satellite missions [14].
- TropiSAR 2009 campaign was conducted over Nouragues, Paracou in French Guiana, with simultaneous P- and L-band SAR data recording, evaluating the potential of SAR for estimation of biomass over tropical forests [15].
- The Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) flight campaign was conducted between 2012 and 2015 using P-band SAR for polarimetric measurements over major North American biomes, especially focusing on root-zone soil moisture [16].
- The NASA-ISRO Airborne Synthetic Aperture Radar (ASAR) flight campaign in 2019 was conducted over different biomes in North America, investigating the potential of L- and S-band for environmental monitoring in the context of the upcoming NISAR satellite mission [17].
- The UAVSAR AM-PM campaign in 2019 was conducted over different biomes in the Southeastern United States in preparation for the upcoming NISAR satellite mission, using L-band SAR with alternating morning and evening acquisition times [18].
2. Study Area
3. Data
3.1. C- and L-Band Airborne SAR
3.2. Sentinel-1 C-Band SAR
3.3. ALOS-2 L-Band SAR
3.4. UASs
3.5. In Situ Measurements
3.5.1. Soil Moisture
3.5.2. Plant Sampling
4. Methods
4.1. In Situ Pre-Processing
4.2. Sigma Nought
4.3. Linear Correlation
5. Results and Discussion
5.1. Temporal Trends of Backscattering Signals from Air- and Space-Borne SAR Data
- Due to sub-optimal radiometric calibration, both C- and L-band airborne data differ in absolute values and in their temporal behavior from corresponding space borne data.
- The use of airborne SAR data from different acquisition dates for analyzing the temporal behavior of surface parameters would lead to biased results.
5.2. Backscattering Signal and Soil Moisture
- C- and L-band do not show any correlation for sugar beet.
- The co-polarized L-band signal has the highest correlation to soil moisture regarding the narrow-leafed crops.
- Two different scattering mechanisms are measured with co- and cross-polarization at L-band, while only one scattering mechanism is prominent at C-band.
5.3. Backscattering Signal and Plant Parameters
- For both C- and L-band, higher correlation can be observed with VWC than plant height.
- The attenuation effect of cereals on the backscattering signal is most prominent at the C-band, resulting in negative correlations.
5.4. Backscattering Signal and Interception
5.5. Backscattering Signal and Normalized Difference Red Edge Index
- For the broadleaf crops, L-band shows highest correlation with NDRE, while for the narrow-leafed, C-band shows highest correlation.
- C-band is highly affected by the attenuation effects of cereals, resulting in negative correlations with NDRE, while L-band is not affected.
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | 17 June | 18 June | 19 June | 20 June | 21 June | 22 June | 23 June | 25 June | 26 June | 27 June | 30 June | 7 August | 8 August | 9 August | 10 August |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAR Data | |||||||||||||||
C-band airborne | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||
L-band airborne | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||
Sentinel-1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
ALOS-2 | 1 | 1 | 1 | ||||||||||||
UAS Data | |||||||||||||||
Mavic Pro RGB | 1 | 1 | 1 | ||||||||||||
Micasense RedEdge-M | 1 | 1 | |||||||||||||
FLIR VUE Pro R 640 | 1 | 1 | |||||||||||||
In-Situ Measurements | |||||||||||||||
Soil Sampling | 1355 | 1023 | 791 | 802 | 543 | 541 | |||||||||
Plant Sampling | 45 | 22 | |||||||||||||
Cosmic Ray Rover | 2142 | 1677 | |||||||||||||
Soil Parameters: | Date; Latitude; Longitude; Temperature (°C), Soil Moisture (%), Bulk Electric Conductivity (raw/thermal corrected); Pore Water Electric Conductivity; Dielectric Permittivity Real (raw/thermal corrected); Dielectric Permittivity Imaginary (raw/thermal corrected), Crop Type, Crop Height | ||||||||||||||
Plant Parameters: | Date, Plant Species; Field No.; Amount of Plants (40 × 40 cm2); BBCH; Plant Height (cm); SPAD 502; Sun Scan; Fresh Weight Leaves (g); Fresh Weight Stems (g); Leaf Area (cm2); Dry Weight Leaves (g); Water Content Leaves (g); Dry Weight Stems (g); Water Content Stems (g); Chlorophyll A+B; Carotinoide |
References
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Dudula, J.; Randhir, T.O. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices. J. Hydrol. 2016, 541, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Christidis, N.; Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Chang. 2013, 3, 807–810. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement; Report No. FCCC/CP/2015/L.9/Rev.1; UNFCCC: Paris, France, 2015. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Gao, H.; Lu, H.; Lettenmaier, D.P. Remote sensing: Hydrology. Prog. Phys. Geogr. Earth Environ. 2009, 33, 490–509. [Google Scholar] [CrossRef]
- Gleason, C.J.; Wada, Y.; Wang, J. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. J. Adv. Model. Earth Syst. 2018, 10, 2–17. [Google Scholar] [CrossRef]
- ESA. Copernicus L-band SAR Mission Requirements Document. Available online: https://esamultimedia.esa.int/docs/EarthObservation/Copernicus_L-band_SAR_mission_ROSE-L_MRD_v2.0_issued.pdf (accessed on 20 January 2020).
- El Hajj, M.; Baghdadi, N.; Bazzi, H.; Zribi, M. Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote Sens. 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- De Roo, R.D.; Yang, D; Ulaby, F.T.; Dobson, M.C. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 864–872. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.-W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef] [Green Version]
- NASA. Available online: https://nisar.jpl.nasa.gov/mission/quick-facts/ (accessed on 17 June 2020).
- European Space Agency. AgriSAR 2006: Agricultural Bio-/Geophysical Retrievals from Frequent Repeat SAR and Optical Imaging; European Space Agency: Paris, France, 2006. [Google Scholar]
- European Space Agency. TropiSAR: Tropical Forest Biomass Mapping Using L- and P-Band SAR; European Space Agency: Paris, France, 2009. [Google Scholar]
- Chapin, E.; Chau, A.; Chen, J.; Heavey, B.; Hensley, S.; Lou, Y.; Machuzak, R.; Moghaddam, M. AirMOSS: An Airborne P-band SAR to measure root-zone soil moisture. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; IEEE: Piscataway, NJ, USA, 2012. ISBN 9781467306577. [Google Scholar]
- NASA. NASA & ISRO ASAR Campaign (L- and S-band) Deployment-UAVSAR. Available online: https://uavsar.jpl.nasa.gov/cgi-bin/deployment.pl?id=L20191101 (accessed on 18 December 2020).
- Chapman, B.; Siqueira, P.; Saatchi, S.; Simard, M.; Kellndorfer, J. Initial results from the 2019 NISAR Ecosystem Cal/Val Exercise in the SE USA. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; pp. 8641–8644, ISBN 978-1-5386-9154-0. [Google Scholar]
- Vereecken, H.; Weihermüller, L.; Jonard, F.; Montzka, C. Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review. Vadose Zone J. 2012, 11, vzj2011-0138ra. [Google Scholar] [CrossRef]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.-C.; Bizzarri, B.; Wigneron, J.-P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, 1879. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Kumar, D.; Srivastava, H. Assessment of Different Methods for Soil Moisture Estimation: A Review. J. Remote Sens. GIS 2018, 9, 57–73. [Google Scholar]
- Liu, C.-A.; Chen, Z.-X.; Shao, Y.; Chen, J.-S.; Hasi, T.; Pan, H.-Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, G.; Iodice, A.; Poreh, D.; Riccio, D. Soil Moisture Retrieval from Polarimetric Sar Data: A Short Review of Existing Methods and a New One. Living Planet Symp. 2016, 740, 136. [Google Scholar]
- Arii, M.; Yamada, H.; Kobayashi, T.; Kojima, S.; Umehara, T.; Komatsu, T.; Nishimura, T. Theoretical Characterization of X-Band Multiincidence Angle and Multipolarimetric SAR Data From Rice Paddies at Late Vegetative Stage. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2706–2715. [Google Scholar] [CrossRef]
- Blumberg, D.G.; Freilikher, V.; Lyalko, I.V.; Vulfson, L.D.; Kotlyar, A.L.; Shevchenko, V.N.; Ryabokonenko, A.D. Soil Moisture (Water-Content) Assessment by an Airborne Scatterometer. Remote Sens. Environ. 2000, 71, 309–319. [Google Scholar] [CrossRef]
- Ulaby, F.; Batlivala, P.; Dobson, M. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Bradley, G.A.; Dobson, M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II-Vegetation-Covered Soil. IEEE Trans. Geosci. Electron. 1979, 17, 33–40. [Google Scholar] [CrossRef]
- Verma, N.; Mishra, P.; Purohit, N. Effect of Surface Roughness Parameter on Soil Moisture of Wheat Field in Growing Stage: An Application of Sentinel-1 SAR Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019–2 August 2019; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; pp. 5929–5932, ISBN 978-1-5386-9154-0. [Google Scholar]
- Alemohammad, S.H.; Jagdhuber, T.; Moghaddam, M.; Entekhabi, D. Soil and Vegetation Scattering Contributions in L-Band and P-Band Polarimetric SAR Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8417–8429. [Google Scholar] [CrossRef]
- Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data. Remote Sens. 2019, 11, 1569. [Google Scholar] [CrossRef] [Green Version]
- Erten, E.; Lopez-Sanchez, J.M.; Yuzugullu, O.; Hajnsek, I. Retrieval of agricultural crop height from space: A comparison of SAR techniques. Remote Sens. Environ. 2016, 187, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, C.; Posa, F. Inferring Vegetation Water Content From C- and L-Band SAR Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3165–3171. [Google Scholar] [CrossRef]
- Montzka, C.; Brogi, C.; Mengen, D.; Matveeva, M.; Baum, S.; Schüttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; Masalias, D.; et al. SARSENSE: A C- and L-Band SAR Rehearsal Campaign in Germany in Preparation for Rose-L. Int. Geosci. Remote Sens. Symp. 2020, 4277, 1–4. [Google Scholar]
- Bogena, H.R.; Montzka, C.; Huisman, J.A.; Graf, A.; Schmidt, M.; Stockinger, M.; von Hebel, C.; Hendricks-Franssen, H.J.; van der Kruk, J.; Tappe, W.; et al. The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone J. 2018, 17, 180055. [Google Scholar] [CrossRef]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 2011, 10, 955–973. [Google Scholar] [CrossRef] [Green Version]
- Jonard, F.; Weihermuller, L.; Schwank, M.; Jadoon, K.Z.; Vereecken, H.; Lambot, S. Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3095–3109. [Google Scholar] [CrossRef]
- Jonard, F.; Bircher, S.; Demontoux, F.; Weihermüller, L.; Razafindratsima, S.; Wigneron, J.-P.; Vereecken, H. Passive L-Band Microwave Remote Sensing of Organic Soil Surface Layers: A Tower-Based Experiment. Remote Sens. 2018, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Weihermüller, L.; Vereecken, H.; Jonard, F. Vegetation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the Growth Cycle of a Winter Wheat. Remote Sens. 2018, 10, 1637. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Montzka, C.; Rüdiger, C.; Ali, M.; Bogena, H.R.; Vereecken, H. Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. ISPRS J. Photogramm. Remote Sens. 2014, 91, 59–71. [Google Scholar] [CrossRef]
- Montzka, C.; Bogena, H.R.; Weihermuller, L.; Jonard, F.; Bouzinac, C.; Kainulainen, J.; Balling, J.E.; Loew, A.; dall’Amico, J.T.; Rouhe, E.; et al. Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1728–1743. [Google Scholar] [CrossRef]
- Montzka, C.; Jagdhuber, T.; Horn, R.; Bogena, H.R.; Hajnsek, I.; Reigber, A.; Vereecken, H. Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3878–3889. [Google Scholar] [CrossRef]
- Thünen Projekte. Selhausen (C1)-Thünen Projekte. Available online: https://www.icos-infrastruktur.de/icos-d/komponenten/oekosysteme/beobachtungsstandorte/selhausen-c1/ (accessed on 16 December 2020).
- Weihermüller, L.; Huisman, J.A.; Lambot, S.; Herbst, M.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Brogi, C.; Huisman, J.A.; Pätzold, S.; von Hebel, C.; Weihermüller, L.; Kaufmann, M.S.; van der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi-configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148. [Google Scholar] [CrossRef]
- Rudolph, S.; van der Kruk, J.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Pätzold, S.; Robinson, D.A.; Vereecken, H.; Weihermüller, L. Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma 2015, 241, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Brogi, C.; Huisman, J.A.; Herbst, M.; Weihermüller, L.; Klosterhalfen, A.; Montzka, C.; Reichenau, T.G.; Vereecken, H. Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics-based quantitative soil information. Vadose Zone J. 2020, 19, 2026. [Google Scholar] [CrossRef] [Green Version]
- Herbst, M.; Pohlig, P.; Graf, A.; Weihermüller, L.; Schmidt, M.; Vanderborght, J.; Vereecken, H. Quantification of water stress induced within-field variability of carbon dioxide fluxes in a sugar beet stand. Agric. For. Meteorol. 2021, 297, 108242. [Google Scholar] [CrossRef]
- Masante, D.; Barbosa, P.; Magni, D. EDO Analytical Report: Drought in Europe-August 2019. Available online: https://www.gdacs.org/Public/download.aspx?type=DC&id=194 (accessed on 4 February 2020).
- Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989; ISBN 978-0890063361. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Schubert, A.; Small, D.; Miranda, N.; Geudtner, D.; Meier, E. Sentinel-1A Product Geolocation Accuracy: Commissioning Phase Results. Remote Sens. 2015, 7, 9431–9449. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, K. ESA’s Radar Observatory Mission for GMES Operational Services; ESA SP ESA-SP-1322/1; ESA: Noordwijk, The Netherlands, 2012. [Google Scholar]
- ESA. The Sentinel Application Platform (SNAP), a Common Architecture for All Sentinel Toolboxes Being Jointly Developed by Brockmann Consult, Array Systems Computing and C-S. Available online: http://step.esa.int/main/download/ (accessed on 18 November 2019).
- Google. Sentinel-1 Algorithms. Available online: https://developers.google.com/earth-engine/sentinel1 (accessed on 18 November 2019).
- Propeller. Ground Control Points for Drone Surveys & Mapping|AeroPoints. Available online: https://www.propelleraero.com/aeropoints/ (accessed on 16 December 2020).
- Chiabrando, F.; Teppati Losè, L. Performance evaluation of cots uav for architectural heritage documentation. A test on s.giuliano chapel in savigliano (cn)–Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 77–84. [Google Scholar] [CrossRef] [Green Version]
- FLIR Vue Pro R|FLIR Systems. Available online: https://www.flir.de/products/vue-pro-r/ (accessed on 16 December 2020).
- Stevens Water. HydraProbe|Stevens Water. Available online: https://stevenswater.com/products/hydraprobe/ (accessed on 16 December 2020).
- Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor. Vadose Zone J. 2005, 4, 1070–1079. [Google Scholar] [CrossRef]
- Köhli, M.; Schrön, M.; Zreda, M.; Schmidt, U.; Dietrich, P.; Zacharias, S. Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 2015, 51, 5772–5790. [Google Scholar] [CrossRef] [Green Version]
- Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35, 362. [Google Scholar] [CrossRef] [Green Version]
- Jakobi, J.; Huisman, J.A.; Schrön, M.; Fiedler, J.; Brogi, C.; Vereecken, H.; Bogena, H.R. Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2020, 2, 4079. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Ferré, T.P.A. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 2010, 46, 2454. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors 2017, 17, 208. [Google Scholar] [CrossRef] [Green Version]
- Delta, T. SunScan Canopy Analysis-Canopy Analyser-LAI-PAR. Available online: https://www.delta-t.co.uk/product/sunscan/ (accessed on 16 December 2020).
- KONICA MINOLTA Europe. Available online: https://www5.konicaminolta.eu/de/messgeraete/produkte/farbmessung/chlorophyll-messgeraet/spad-502plus/einfuehrung.html?gclid=CjwKCAiA_eb-BRB2EiwAGBnXXssTMesBxvkJy3Qtc4bsrCFzLXrD8DU9XafeTUCX3oyCkt-1tq2BPxoCjCgQAvD_BwE (accessed on 16 December 2020).
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W.J. Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 439–450. [Google Scholar] [CrossRef]
- Wegmüller, U.; Santoro, M.; Mattia, F.; Balenzano, A.; Satalino, G.; Marzahn, P.; Fischer, G.; Ludwig, R.; Floury, N. Progress in the understanding of narrow directional microwave scattering of agricultural fields. Remote Sens. Environ. 2011, 115, 2423–2433. [Google Scholar] [CrossRef]
- Fontanelli, G.; Paloscia, S.; Zribi, M.; Chahbi, A. Sensitivity analysis of X-band SAR to wheat and barley leaf area index in the Merguellil Basin. Remote Sens. Lett. 2013, 4, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884. [Google Scholar] [CrossRef]
- Santi, E.; Fontanelli, G.; Montomoli, F.; Brogioni, M.; Macelloni, G.; Paloscia, S.; Pettinato, S.; Pampaloni, P. The retrieval and monitoring of vegetation parameters from COSMO-SkyMed images. In Proceedings of the IGARSS 2012—2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22 July–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 7031–7034, ISBN 978-1-4673-1159-5. [Google Scholar]
- Morrison, K.; Wagner, W. Explaining Anomalies in SAR and Scatterometer Soil Moisture Retrievals From Dry Soils with Subsurface Scattering. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
- Block, B. Die Zuckerrübe. In Rübensirup: Seine Herstellung, Beurteilung und Verwendung; Block, B., Ed.; Springer: Berlin/Heidelberg, Germany, 1920; pp. 10–18. ISBN 978-3-662-33861-2. [Google Scholar]
- Wang, H.; Magagi, R.; Goïta, K.; Wang, K. Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau. Remote Sens. Environ. 2020, 251, 112100. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Skriver, H.; Svendsen, M.T.; Thomsen, A.G. Multitemporal C- and L-band polarimetric signatures of crops. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2413–2429. [Google Scholar] [CrossRef]
- Mladenova, I.E.; Jackson, T.J.; Bindlish, R.; Hensley, S. Incidence Angle Normalization of Radar Backscatter Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1791–1804. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Geldsetzer, T.; Howell, S.E.L.; Yackel, J.J.; Nandan, V.; Scharien, R.K. Incidence Angle Dependence of HH-Polarized C- and L-Band Wintertime Backscatter Over Arctic Sea Ice. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6686–6698. [Google Scholar] [CrossRef]
- Vermunt, P.C.; Khabbazan, S.; Steele-Dunne, S.C.; Judge, J.; Monsivais-Huertero, A.; Guerriero, L.; Liu, P.-W. Response of Subdaily L-Band Backscatter to Internal and Surface Canopy Water Dynamics. IEEE Trans. Geosci. Remote Sens. 2020, 1–16. [Google Scholar] [CrossRef]
- Riedel, T.; Pathe, C.; Thiel, C.; Herold, M.; Schmullius, C. Systematic investigation on the effect of dew and interception on multifrequency and multipolarimetric radar backscatter signals. Retr. Bio- Geo-Phys. Parameters SAR Data Land Appl. 2001, 475, 99–104. [Google Scholar]
- Allen, C.T.; Ulaby, F.T. Characterization of the Microwave Extinction Properties of Vegetation Canopies; University of Michigan, College of Engineering, Radiation Laboratory: Ann Arbor, MI, USA, 1984. [Google Scholar]
- Easterday, K.; Kislik, C.; Dawson, T.; Hogan, S.; Kelly, M. Remotely Sensed Water Limitation in Vegetation: Insights from an Experiment with Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 1853. [Google Scholar] [CrossRef] [Green Version]
Crop Type | Field ID |
---|---|
bare soil | F09a, F10 |
barley | F15, F16, F17b, F20, F22a, F27, F33, F35, F36, F39, F48b |
cabbage | F54 |
oat | F23b, F25, F30, F56 |
potato | F11, F14b |
rye | F18ab, F49b, F46 |
silage maize | F03, F06, F09b, F13a, F24b, F41, F42, F44a, F51b, F55 |
sugar beet | F01, F04, F14a, F21, F28, F40, F44b, F47 |
wheat | F05, F07, F8_24, F12, F13ba, F17a, F22cb, F23a, F37, F38, F50c, F51a |
winter rapeseed | F53 |
Parameter | C-Band | L-Band |
---|---|---|
Antenna Geometry (cm) | 32 × 13 | 33 × 33, 33 × 66 |
Altitude (m) | 1620 | |
Velocity (Kn) | ~130 | |
Nominal look angle (°) | 45 | |
Mode | Frequency Modulated Continuous Wave-Full-Polar | |
Peak Power (W) | 3–10 | |
Actual PRF (kHz) | 1.89 | |
Sampling frequency (MHz) | 50 | |
Center frequency (MHz) | 5400 | 1400/1300 |
Transmitted bandwidth (MHz) | 200 | 50 |
Azimuth bandwidth (MHz) | 100 | |
Beamwidth (Azim. × Elev.) (°) | 10 × 35 | 40 × 40, 20 × 40 |
Ground range resolution (m) | 0.9–1.3 | 3.6–5.2 |
Range pixel spacing (m) | 1 | |
Azimuth pixel spacing (m) | 1 | |
Incidence angle range (°) | 35–55 |
Band Name | Center Wavelength (nm) | Bandwidth (nm) |
---|---|---|
Blue | 475 | 20 |
Green | 560 | 20 |
Red | 668 | 10 |
Red Edge | 717 | 10 |
NIR | 840 | 40 |
Crop. | C-Band VV | C-Band VH | L-Band HH | L-Band HV | |
---|---|---|---|---|---|
Sugar Beet | R2 | 0.00 | 0.03 | 0.00 | 0.00 |
RMSD | 1.15 | 0.67 | 6.05 | 5.25 | |
Potato | R2 | 0.35 | 0.20 | 0.05 | 0.32 |
RMSD | 0.54 | 0.64 | 3.56 | 4.57 | |
Wheat | R2 | 0.18 | 0.28 | 0.31 | 0.07 |
RMSD | 0.95 | 1.16 | 2.28 | 2.07 | |
Barley | R2 | 0.09 | 0.05 | 0.42 | 0.06 |
RMSD | 4.22 | 3.02 | 6.86 | 7.23 |
Crop | C-Band VV | C-Band VH | L-Band HH | L-Band HV | |
---|---|---|---|---|---|
Sugar Beet | R2 | 0.64 | 0.24 | 0.27 | 0.01 |
RMSD | 0.20 | 0.40 | 0.65 | 1.65 | |
Potato | R2 | 0.24 | 0.55 | 0.27 | 0.76 |
RMSD | 0.41 | 0.36 | 1.90 | 0.28 | |
Wheat | R2 | 0.33 | 0.12 | 0.58 | 0.65 |
RMSD | 0.37 | 0.21 | 1.95 | 0.90 | |
Barley | R2 | 0.16 | 0.63 | 0.60 | 0.17 |
RMSD | 1.02 | 0.50 | 0.26 | 0.83 |
Crop | C-Band VV | C-Band VH | L-Band HH | L-Band HV | |
---|---|---|---|---|---|
Sugar Beet | R2 | 0.55 | 0.25 | 0.22 | 0.41 |
RMSD | 0.22 | 0.41 | 0.73 | 1.24 | |
Potato | R2 | 0.13 | 0.00 | 0.00 | 0.08 |
RMSD | 0.47 | 0.80 | 2.61 | 1.09 | |
Wheat | R2 | 0.08 | 0.11 | 0.22 | 0.10 |
RMSD | 0.51 | 0.21 | 3.63 | 2.30 | |
Barley | R2 | 0.12 | 0.01 | 0.05 | 0.22 |
RMSD | 1.07 | 1.34 | 0.62 | 0.78 |
Crop | C-Band HH | C-Band HV | L-Band HH | L-Band HV | |
---|---|---|---|---|---|
Sugar Beet | R2 | 0.22 | 0.14 | 0.24 | 0.18 |
RMSD | 3.75 | 2.24 | 2.37 | 4.70 | |
Potato | R2 | 0.34 | 0.40 | 0.46 | 0.64 |
RMSD | 2.64 | 2.26 | 2.44 | 2.76 | |
Wheat | R2 | 0.74 | 0.56 | 0.55 | 0.47 |
RMSD | 0.87 | 1.26 | 5.63 | 6.37 | |
Barley | R2 | 0.74 | 0.22 | 0.39 | 0.53 |
RMSD | 0.42 | 0.54 | 5.45 | 6.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengen, D.; Montzka, C.; Jagdhuber, T.; Fluhrer, A.; Brogi, C.; Baum, S.; Schüttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; et al. The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sens. 2021, 13, 825. https://doi.org/10.3390/rs13040825
Mengen D, Montzka C, Jagdhuber T, Fluhrer A, Brogi C, Baum S, Schüttemeyer D, Bayat B, Bogena H, Coccia A, et al. The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sensing. 2021; 13(4):825. https://doi.org/10.3390/rs13040825
Chicago/Turabian StyleMengen, David, Carsten Montzka, Thomas Jagdhuber, Anke Fluhrer, Cosimo Brogi, Stephani Baum, Dirk Schüttemeyer, Bagher Bayat, Heye Bogena, Alex Coccia, and et al. 2021. "The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture" Remote Sensing 13, no. 4: 825. https://doi.org/10.3390/rs13040825
APA StyleMengen, D., Montzka, C., Jagdhuber, T., Fluhrer, A., Brogi, C., Baum, S., Schüttemeyer, D., Bayat, B., Bogena, H., Coccia, A., Masalias, G., Trinkel, V., Jakobi, J., Jonard, F., Ma, Y., Mattia, F., Palmisano, D., Rascher, U., Satalino, G., ... Vereecken, H. (2021). The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sensing, 13(4), 825. https://doi.org/10.3390/rs13040825