Tenuous Correlation between Snow Depth or Sea Ice Thickness and C- or X-Band Backscattering in Nunavik Fjords of the Hudson Strait
Abstract
:1. Introduction
1.1. Context
1.2. Local Snow Depth and Sea Ice Thickness Monitoring in Nunavik and Nunavut
1.3. Relationship with C- and X-Band Backscattering
1.4. Objectives
2. Materials and Methods
2.1. Study Areas
2.2. Snow Depth and Sea Ice Thickness Measurements
2.3. Satellite SAR Data
2.3.1. RADARSAT-2
2.3.2. TerraSAR-X
2.3.3. Computing SAR Parameter Seasonal Medians
2.3.4. Extracting SAR Parameter Values Coincident with Thickness Measurements
2.4. Statistical Tools
2.4.1. Bayesian Framework
2.4.2. Model Fitting: Bayesian Linear Regression
2.4.3. Model Comparison: Bayes Factor
2.4.4. Application to Snow Depth, Ice Thickness and SAR
2.4.5. Geary’s C for Spatial Autocorrelation
3. Results
3.1. Snow Depth and Ice Thickness Spatial Distributions
3.2. C- and X-Band SAR Seasonal Medians
3.3. Relationship between SAR and End-of-Winter Snow Depth or Ice Thickness
4. Discussion
4.1. Spatial Structure in Environmental Variables
4.1.1. Snow Depth Distribution
4.1.2. Ice Thickness Distribution
4.2. Ice Thickness vs. C- or X-Band Backscattering
4.2.1. Case A: Thin Snow Cover
4.2.2. Case B: Thick Snow Cover
4.2.3. Case C: Very Smooth Ice
4.2.4. Relationship with Other SAR Parameters
4.3. Snow Depth vs. C- or X-Band Backscattering
4.4. Interpreting Results from a Bayesian Linear Regression
4.5. Perspective for Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nickels, S.; Furgal, C.; Buell, M.; Moquin, H. Unikkaaqatigiit—Putting the Human Face on Climate Change: Perspectives from Inuit in Canada, pre-release english only version ed.; Inuit Tapiriit Kanatami, Nasivvik Centre for Inuit Health and Changing Environments at Université Laval and the Ajunnginiq Centre at the National Aboriginal Health Organization: Ottawa, ON, Canada, 2005; Available online: https://www.itk.ca/wp-content/uploads/2016/07/Nunavik.pdf (accessed on 13 February 2021).
- Cuerrier, A.; Brunet, N.D.; Gérin-Lajoie, J.; Downing, A.; Lévesque, E. The Study of Inuit Knowledge of Climate Change in Nunavik, Quebec: A Mixed Methods Approach. Hum. Ecol. 2015, 43, 379–394. [Google Scholar] [CrossRef]
- Laidler, G.J. Inuit and Scientific Perspectives on the Relationship Between Sea Ice and Climate Change: The Ideal Complement? Clim. Chang. 2006, 78, 407–444. [Google Scholar] [CrossRef]
- Dawson, J.; Pizzolato, L.; Howell, S.E.; Copland, L.; Johnston, M.E. Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from 1990 to 2015 + Supplementary Appendix 1: Figs. S1–S7 (See Article Tools). ARCTIC 2018, 71, 15. [Google Scholar] [CrossRef] [Green Version]
- Mailhot, A.; Chaumont, D. Élaboration du Portrait Bioclimatique Futur du Nunavik—Tome II. Rapport présenté au Ministère de la forêt, de la Faune et des parcs; Ouranos: Montréal, QC, Canada, 2017; p. 215. [Google Scholar]
- Iacozza, J.; Barber, D.G. An examination of snow redistribution over smooth land-fast sea ice. Hydrol. Processes 2010, 24, 850–865. [Google Scholar] [CrossRef]
- Tremblay, M.; Furgal, C.; Larrivée, C.; Savard, J.P.; Barrett, M.; Annanack, T.; Enish, N.; Etidloie, B. Communities and Ice: Bringing Together Traditional and Scientific Knowledge. In Climate Change: Linking Traditionnal and Scientific Knowledge; Aboriginal Issues Press: Winnipeg, MB, Canada, 2006; p. 289. [Google Scholar]
- Mahoney, A.; Gearheard, S.; Oshima, T.; Qillaq, T. Sea ice thickness measurements from a community-based observing network. Bull. Am. Meteorol. Soc. 2009, 90, 370. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.; Ford, J.; Statham, S.; Pearce, T.; Ljubicic, G.J.; Gauthier, Y.; Braithwaite, L. Chapter 11: Access to the Land and Ice: Travel and Hunting in a Changing Environment. In From Science to Policy in the Eastern Canadian Arctic: An Integrated Regional Impact Study (IRIS) of Climate Change and Moderization; Bell, T., Brown, T.M., Eds.; ArcticNet: Québec City, QC, Canada, 2018; pp. 323–342. [Google Scholar]
- Bell, T.; Briggs, R.; Bachmayer, R.; Li, S. Augmenting Inuit knowledge for safe sea-ice travel; The SmartICE information system. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–9. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Satellite SAR Data-based Sea Ice Classification: An Overview. Geosciences 2019, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Ramjan, S.; Geldsetzer, T.; Scharien, R.; Yackel, J. Predicting Melt Pond Fraction on Landfast Snow Covered First Year Sea Ice from Winter C-Band SAR Backscatter Utilizing Linear, Polarimetric and Texture Parameters. Remote Sens. 2018, 10, 1603. [Google Scholar] [CrossRef] [Green Version]
- Scharien, R.K.; Hochheim, K.; Landy, J.; Barber, D.G. First-year sea ice melt pond fraction estimation from dual-polarisation C-band: Part 2: Scaling in situ to Radarsat-2. Cryosphere 2014, 8, 2163–2176. [Google Scholar] [CrossRef] [Green Version]
- Segal, R.A.; Scharien, R.K.; Duerden, F.; Tam, C.L. The Best of Both Worlds: Connecting Remote Sensing and Arctic Communities for Safe Sea Ice Travel. ARCTIC 2021, 73, 461–484. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eriksson, L.E.B.; Mahoney, A.R.; Eicken, H.; Meyer, F.J. Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry. Cryosphere 2019, 13, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Yackel, J.; Geldsetzer, T.; Mahmud, M.; Nandan, V.; Howell, S.; Scharien, R.; Lam, H. Snow Thickness Estimation on First-Year Sea Ice from Late Winter Spaceborne Scatterometer Backscatter Variance. Remote Sens. 2019, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A.M.; Brekke, C.; Spreen, G.; King, J.A. X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring. Remote Sens. Environ. 2018, 204, 162–180. [Google Scholar] [CrossRef]
- Singha, S.; Johansson, M.; Hughes, N.; Hvidegaard, S.M.; Skourup, H. Arctic Sea Ice Characterization Using Spaceborne Fully Polarimetric L-, C-, and X-Band SAR With Validation by Airborne Measurements. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3715–3734. [Google Scholar] [CrossRef]
- Nandan, V.; Geldsetzer, T.; Mahmud, M.; Yackel, J.; Ramjan, S. Ku-, X-and C-Band Microwave Backscatter Indices from Saline Snow Covers on Arctic First-Year Sea Ice. Remote Sens. 2017, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Fors, A.S.; Brekke, C.; Doulgeris, A.P.; Eltoft, T.; Renner, A.H.H.; Gerland, S. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band. Cryosphere 2016, 10, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.E.B.; Pemberton, P.; Lindh, H.; Karlson, B. Evaluation of new spaceborne SAR sensors for sea-ice monitoring in the Baltic Sea. Can. J. Remote Sens. 2010, 36, S56–S73. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Nandan, V.; Geldsetzer, T.; Islam, T.; Yackel, J.J.; Gill, J.P.; Fuller, M.C.; Gunn, G.; Duguay, C. Ku-, X- and C-band measured and modeled microwave backscatter from a highly saline snow cover on first-year sea ice. Remote Sens. Environ. 2016, 187, 62–75. [Google Scholar] [CrossRef]
- Nakamura, K.; Wakabayashi, H.; Naoki, K.; Nishio, F.; Moriyama, T.; Uratsuka, S. Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2460–2469. [Google Scholar] [CrossRef]
- Nakamura, K.; Wakabayashi, H.; Uto, s.; Naoki, K.; Nishio, F.; Uratsuka, s. Sea-Ice thickness retrieval in the Sea of Okhotsk using dual-polarization SAR data. Ann. Glaciol. 2006, 44, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dierking, W.; Zhang, J.; Meng, J.; Lang, H. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images. Cryosphere 2016, 10, 1529–1545. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.P.S.; Yackel, J.J.; Geldsetzer, T.; Fuller, M.C. Sensitivity of C-band synthetic aperture radar polarimetric parameters to snow thickness over landfast smooth first-year sea ice. Remote Sens. Environ. 2015, 166, 34–49. [Google Scholar] [CrossRef]
- GENIVAR. Environmental and Social Impact Assessment of the Deception Bay Wharf and Sediment Management; Report from GENIVAR for Canadian Royalties Inc.; GENIVAR: Montréal, QC, Canada, 2012; p. 281. [Google Scholar]
- Gauthier, Y.; Dufour-Beauséjour, S.; Poulin, J.; Bernier, M. ICE Monitoring in Deception Bay: Progress report 2016–2018; Institut National de la Recherche Scientifique: Quebec City, QC, Canada, 2018; p. 65, Number 1792; Available online: http://espace.inrs.ca/id/eprint/7538/ (accessed on 12 February 2021).
- Greydanus, K.; Provencher, J.; Carter, N.A.; Dawson, J.; Kochanowicz, Z. Arctic Corridors and Northern Voices: Governing marine transportation in the Canadian Arctic (Salluit, Quebec Community Report); University of Ottawa: Ottawa, ON, Canada, 2018; p. 50. Available online: https://ruor.uottawa.ca/handle/10393/38036 (accessed on 12 February 2021).
- Dufour-Beauséjour, S.; Wendleder, A.; Gauthier, Y.; Bernier, M.; Poulin, J.; Gilbert, V.; Tuniq, J.; Rouleau, A.; Roth, A. Combining TerraSAR-X and time-lapse photography for seasonal sea ice monitoring: The case of Deception Bay, Nunavik. Cryosphere 2020, 14, 1595–1609. [Google Scholar] [CrossRef]
- DFO; Canadian Hydrological Service. Tides, Currents, and Water Levels—2019 Tide Tables; Number Volume 4-Arctic and Hudson Bay; Available online: https://www.tides.gc.ca/Eng/data/predictions/2019 (accessed on 14 February 2021).
- GENIVAR. Study on Maritime Navigation in Deception Bay—Impact on Marine Mammals and Traditional Inuit Activity; Report from GENIVAR for Canadian Royalties Inc.; GENIVAR: Montréal, QC, Canada, 2007; p. 71. [Google Scholar]
- MDA. RADARSAT-2 Product Description; Number RN-SP-52-1238; Maxar Technologies Ltd: Richmond, CO, Canada, 2018; p. 91. [Google Scholar]
- Dufour-Beausejour, S. java-snap 2019. Available online: https://zenodo.org/record/3930921#.YCYV3HkRVPY (accessed on 12 February 2021).
- Veci, L. SAR Basics with the Sentinel-1 Toolbox. Tutorials. 2015. Available online: http://step.esa.int/docs/tutorials/S1TBX%20SAR%20Basics%20Tutorial.pdf (accessed on 14 February 2021).
- Foucher, S.; Lopez-Martinez, C. Analysis, Evaluation, and Comparison of Polarimetric SAR Speckle Filtering Techniques. IEEE Trans. Image Process. 2014, 23, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Veci, L.; Braun, A. Sentinel-1 Toolbox Polarimetric Tutorial. 2015. Available online: http://step.esa.int/docs/tutorials/S1TBX%20Polarimetry%20with%20Radarsat-2%20Tutorial_v2.pdf (accessed on 14 February 2021).
- Pottier, E. Polarimetry Basics. 2007. Available online: http://earth.esa.int/landtraining07/D1LA3-Pottier.pdf (accessed on 14 February 2021).
- Canada, N.R. Canadian Digital Elevation Model, 1945–2011. 2015. Available online: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 (accessed on 14 February 2021).
- Anfinsen, S.; Doulgeris, A.; Eltoft, T. Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3795–3809. [Google Scholar] [CrossRef]
- Eineder, M.; Fritz, T.; Mittermayer, J.; Roth, A.; Boerner, E.; Breit, H. TerraSAR-X Ground Segment, Basic Product Specification Document; Number TX-GS-DD-3302; DLR: Oberpfaffenhofen, Germany, 2008; Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a515513.pdf (accessed on 14 February 2021).
- Bertram, A.; Wendleder, A.; Schmitt, A.; Huber, M. Long-Term Monitoring of Water Dynamics in the Sahel Region using the Multi-SAR-System. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Schmitt, A.; Wendleder, A.; Hinz, S. The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J. Photogramm. Remote Sens. 2015, 102, 122–139. [Google Scholar] [CrossRef] [Green Version]
- Dufour-Beauséjour, S. tiffstats 2019. Available online: https://doi.org/10.5281/zenodo.3352367 (accessed on 12 February 2021).
- Dufour-Beauséjour, S. tiff-at-shp 2019. Available online: https://doi.org/10.5281/zenodo.3930953 (accessed on 12 February 2021).
- Wetzels, R.; Wagenmakers, E.J. A default Bayesian hypothesis test for correlations and partial correlations. Psychonomic Bull. Rev. 2012, 19, 1057–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donegan, C. Re: Spatial Autocorrelation: Its Consequence on Bayesian Linear Regression. 2020. Available online: https://discourse.mc-stan.org/t/spatial-autocorrelation-its-consequence-on-bayesian-linear-regression/17266/3 (accessed on 14 February 2021).
- Simon, J.; Dufour-Beauséjour, S. RS2_bayesian_linear_regression 2020. Available online: https://doi.org/10.5281/zenodo.3905286 (accessed on 12 February 2021).
- Jeffreys, H. The Theory of Probability, 3rd ed.; OUP Oxford: Oxford, UK, 1998. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, Volume 24—3rd Edition, second english edition; Developments in Environmental Modelling, Elsevier: Amsterdam, Netherlands, 2003; Volume 20. [Google Scholar]
- Saas, Y.; Gosselin, F. Comparison of regression methods for spatially-autocorrelated count data on regularly- and irregularly-spaced locations. Ecography 2014, 37, 476–489. [Google Scholar] [CrossRef]
- Høyland, K.V. Ice thickness, growth and salinity in Van Mijenfjorden, Svalbard, Norway. Polar Res. 2009, 28, 339–352. [Google Scholar] [CrossRef]
- Hudson, E.; Aihoshi, D.; Gaines, T.; Simard, G.; Mullock, J. The Weather of Nunavut and the Arctic - Graphic Area Forecast 36 and 37; NAV CANADA: Ottawa, ON, Canada, 2001; p. 245. [Google Scholar]
- Kimble, G.H.T.; Collaborators. Wind in Icelandic Fjords. Bull. Am. Meteorol. Soc. 1946, 27, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Laidler, G.J.; Dialla, A.; Joamie, E. Human geographies of sea ice: Freeze/thaw processes around Pangnirtung, Nunavut, Canada. Polar Rec. 2008, 44, 335–361. [Google Scholar] [CrossRef]
- Nakamura, K.; Wakabayashi, H.; Uto, S.; Ushio, S.; Nishio, F. Observation of Sea-Ice Thickness Using ENVISAT Data From LÜtzow-Holm Bay, East Antarctica. IEEE Geosci. Remote Sens. Lett. 2009, 6, 277–281. [Google Scholar] [CrossRef]
- Bernier, M.; Dufour-Beausejour, S.; Gilbert, V.; Rouleau, A.; Tuniq, J.; Gauthier, Y. Ice Monitoring: Ice and Snow Thickness Data from Salluit Fjord, Deception Bay and Kangiqsujuaq (Nunavik, Canada); Canadian Cryospheric Information Network: Toronto, ON, Canada, 2017. [Google Scholar]
Year | Salluit | Deception Bay | Kangiqsujuaq |
---|---|---|---|
2016 | 25 January | 22 January | 21 January |
- | 23 April | 19 and 20 April | |
2017 | 18 and 19 January | 13 and 14 January | 10 January |
27 April | 28 and 29 April | 25 April | |
2018 | 30 January | 1 and 2 February | 27 and 28 January |
9 May | 11 May | 8 and 15 May |
Site | Snow (cm) | Ice (cm) | ||||
---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
Salluit | 15 (4) | 4 (3) | 6 (2) | 78 (6) | 74 (5) | 81 (3) |
Deception Bay | 11 (6) | 8 (3) | 8 (5) | 89 (5) | 62 (3) | 83 (9) |
Kangiqsujuaq | 20 (7) | 10 (4) | 9 (4) | 73 (7) | 64 (11) | 69 (6) |
Site | Snow (cm) | Ice (cm) | ||||
---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
Salluit | - | 14 (10) | 11 (7) | - | 132 (9) | 133 (3) |
Deception Bay | 16 (12) | 15 (12) | 8 (6) | 143 (16) | 121 (8) | 133 (10) |
Kangiqsujuaq | 24 (13) | 25 (11) | 22 (11) | 117 (10) | 101 (7) | 101 (8) |
Site | Orbit | Acquisition | Incidence | Acquisition | Number |
---|---|---|---|---|---|
Time (LT) | Angle | Period | of Images | ||
Salluit | FQW16 | 6:30 | 35.4–37 | 2015-12-19 | 18 |
2018-05-01 | |||||
Deception Bay | FQW16 | 6:25 | 35.4–37 | 2015-12-26 | 17 |
2018-05-08 | |||||
Kangiqsujuaq | FQW17 | 6:13 | 36.4–38 | 2015-12-23 | 18 |
2018-05-05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dufour-Beauséjour, S.; Bernier, M.; Simon, J.; Homayouni, S.; Gilbert, V.; Gauthier, Y.; Tuniq, J.; Wendleder, A.; Roth, A. Tenuous Correlation between Snow Depth or Sea Ice Thickness and C- or X-Band Backscattering in Nunavik Fjords of the Hudson Strait. Remote Sens. 2021, 13, 768. https://doi.org/10.3390/rs13040768
Dufour-Beauséjour S, Bernier M, Simon J, Homayouni S, Gilbert V, Gauthier Y, Tuniq J, Wendleder A, Roth A. Tenuous Correlation between Snow Depth or Sea Ice Thickness and C- or X-Band Backscattering in Nunavik Fjords of the Hudson Strait. Remote Sensing. 2021; 13(4):768. https://doi.org/10.3390/rs13040768
Chicago/Turabian StyleDufour-Beauséjour, Sophie, Monique Bernier, Jérome Simon, Saeid Homayouni, Véronique Gilbert, Yves Gauthier, Juupi Tuniq, Anna Wendleder, and Achim Roth. 2021. "Tenuous Correlation between Snow Depth or Sea Ice Thickness and C- or X-Band Backscattering in Nunavik Fjords of the Hudson Strait" Remote Sensing 13, no. 4: 768. https://doi.org/10.3390/rs13040768
APA StyleDufour-Beauséjour, S., Bernier, M., Simon, J., Homayouni, S., Gilbert, V., Gauthier, Y., Tuniq, J., Wendleder, A., & Roth, A. (2021). Tenuous Correlation between Snow Depth or Sea Ice Thickness and C- or X-Band Backscattering in Nunavik Fjords of the Hudson Strait. Remote Sensing, 13(4), 768. https://doi.org/10.3390/rs13040768