The Performance of the Diurnal Cycle of Precipitation from Blended Satellite Techniques over Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. IMERG Precipitation Estimates Data
2.3. Combined Scheme (CoSch) Precipitation Data
2.4. Methodologies for 3-h Database Development
2.5. Gauges Validation Process
2.5.1. Gauge Data
2.5.2. Performance and Statistic Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Lee, H.; Goodman, A.; McGibbney, L.; Waliser, D.E.; Kim, J.; Loikith, P.C.; Gibson, P.B.; Massoud, E.C. Regional Climate Model Evaluation System Powered by Apache Open Climate Workbench v1.3.0: An Enabling Tool for Facilitating Regional Climate Studies. Geosci. Model Dev. 2018, 11, 4435–4449. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.B.; Waliser, D.E.; Lee, H.; Tian, B.; Massoud, E. Climate Model Evaluation in the Presence of Observational Uncertainty: Precipitation Indices over the Contiguous United States. J. Hydrometeorol. 2019, 20, 1339–1357. [Google Scholar] [CrossRef]
- Massoud, E.C.; Espinoza, V.; Guan, B.; Waliser, D.E. Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers. Earths Future 2019, 7, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Xin-Xin, Z.; Xun-Qiang, B.; Xiang-Hui, K. Observed Diurnal Cycle of Summer Precipitation over South Asia and East Asia Based on CMORPH and TRMM Satellite Data. Atmos. Ocean. Sci. Lett. 2015, 8, 201–207. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Chen, H.; Dai, A.; Pan, Y. Summer Precipitation Frequency, Intensity, and Diurnal Cycle over China: A Comparison of Satellite Data with Rain Gauge Observations. J. Clim. 2008, 21, 3997–4010. [Google Scholar] [CrossRef]
- Brito, S.S.D.B.; Oyama, M.D. Daily Cycle of Precipitation over the Northern Coast of Brazil. J. Appl. Meteorol. Climatol. 2014, 53, 2481–2502. [Google Scholar] [CrossRef]
- de Sousa Afonso, J.M.; Vila, D.A.; Gan, M.A.; Quispe, D.P.; Barreto, N.J.C.; Huamán Chinchay, J.H.; Palharini, R.S.A. Precipitation Diurnal Cycle Assessment of Satellite-Based Estimates over Brazil. Remote Sens. 2020, 12, 2339. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A High Spatiotemporal Gauge-Satellite Merged Precipitation Analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of TRMM Rainfall Climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Dinku, T.; Hailemariam, K.; Maidment, R.; Tarnavsky, E.; Connor, S. Combined Use of Satellite Estimates and Rain Gauge Observations to Generate High-Quality Historical Rainfall Time Series over Ethiopia. Int. J. Climatol. 2014, 34, 2489–2504. [Google Scholar] [CrossRef] [Green Version]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Uncertainty Analysis of Bias from Satellite Rainfall Estimates Using Copula Method. Atmos. Res. 2014, 137, 145–166. [Google Scholar] [CrossRef]
- Massoud, E.C.; Lee, H.; Gibson, P.B.; Loikith, P.; Waliser, D.E. Bayesian Model Averaging of Climate Model Projections Constrained by Precipitation Observations over the Contiguous United States. J. Hydrometeorol. 2020, 21, 2401–2418. [Google Scholar] [CrossRef]
- Wootten, A.M.; Massoud, E.C.; Sengupta, A.; Waliser, D.E.; Lee, H. The Effect of Statistical Downscaling on the Weighting of Multi-Model Ensembles of Precipitation. Climate 2020, 8, 138. [Google Scholar] [CrossRef]
- Grimes, D.I.F.; Pardo-Igúzquiza, E. Geostatistical Analysis of Rainfall. Geogr. Anal. 2010, 42, 136–160. [Google Scholar] [CrossRef]
- Manz, B.; Buytaert, W.; Zulkafli, Z.; Lavado, W.; Willems, B.; Robles, L.A.; Rodríguez-Sánchez, J.-P. High-Resolution Satellite-Gauge Merged Precipitation Climatologies of the Tropical Andes. J. Geophys. Res. Atmos. 2016, 121, 1190–1207. [Google Scholar] [CrossRef] [Green Version]
- Giles, J.A.; Ruscica, R.C.; Menéndez, C.G. The Diurnal Cycle of Precipitation over South America Represented by Five Gridded Datasets. Int. J. Climatol. 2020, 40, 668–686. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); NASA: Greenbelt, MD, USA, 2015.
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Rozante, J.R.; Gutierrez, E.R.; de Almeida Fernandes, A.; Vila, D.A. Performance of Precipitation Products Obtained from Combinations of Satellite and Surface Observations. Int. J. Remote Sens. 2020, 41, 7585–7604. [Google Scholar] [CrossRef]
- Rozante, J.R.; Vila, D.A.; Barboza Chiquetto, J.; Fernandes, A.D.A.; Souza Alvim, D. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Mayor, Y.G.; Tereshchenko, I.; Fonseca-Hernández, M.; Pantoja, D.A.; Montes, J.M. Evaluation of Error in IMERG Precipitation Estimates under Different Topographic Conditions and Temporal Scales over Mexico. Remote Sens. 2017, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Vila, D.A.; de Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimates over Continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; Volume 91. [Google Scholar]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef] [Green Version]
Statistic Index | Equation | Unit | Best Value |
---|---|---|---|
Pearson’s Linear Correlation Coefficient | - | 1 | |
Bias | mm/3 h | 0 | |
Mean Absolute Error | mm/3 h | 0 | |
Root Mean Square Error | mm/3 h | 0 |
Observed | ||||
---|---|---|---|---|
Yes | No | Total | ||
Estimated | Yes | Hits (H) | False Alarms (F) | H + F |
No | Misses (M) | Correct Negatives (C) | M + C | |
Total | H + M | F + C | (H + F + M + C) |
Statistic Index | Equation | Best Value |
---|---|---|
Probability of Detection | 1 | |
False Alarm Ratio | 0 | |
Success Ratio | 1 | |
Bias Score | 1 | |
Critical Success Index | 1 | |
Equitable Threat Score | where | 1 |
Box | Time | IMERG | CoSchA | CoSchB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BSCORE | POD | FAR | ETS | BSCORE | POD | FAR | ETS | BSCORE | POD | FAR | ETS | ||
BR | 00 | 1.59 | 0.54 | 0.66 | 0.20 | 1.20 | 0.52 | 0.57 | 0.25 | 1.47 | 0.61 | 0.59 | 0.27 |
03 | 1.54 | 0.51 | 0.67 | 0.19 | 1.17 | 0.49 | 0.59 | 0.23 | 1.45 | 0.58 | 0.60 | 0.25 | |
06 | 1.26 | 0.45 | 0.64 | 0.18 | 0.94 | 0.43 | 0.54 | 0.23 | 1.16 | 0.53 | 0.55 | 0.27 | |
09 | 1.09 | 0.41 | 0.62 | 0.17 | 0.80 | 0.39 | 0.51 | 0.22 | 0.97 | 0.47 | 0.52 | 0.25 | |
12 | 0.95 | 0.36 | 0.62 | 0.16 | 0.70 | 0.32 | 0.54 | 0.18 | 0.88 | 0.38 | 0.56 | 0.20 | |
15 | 1.45 | 0.47 | 0.68 | 0.16 | 1.11 | 0.44 | 0.60 | 0.20 | 1.33 | 0.52 | 0.61 | 0.22 | |
18 | 1.92 | 0.62 | 0.68 | 0.18 | 1.49 | 0.60 | 0.59 | 0.24 | 1.75 | 0.69 | 0.61 | 0.25 | |
21 | 1.89 | 0.62 | 0.67 | 0.18 | 1.44 | 0.60 | 0.58 | 0.25 | 1.71 | 0.68 | 0.60 | 0.26 | |
R1 | 00 | 0.63 | 0.34 | 0.46 | 0.10 | 0.53 | 0.33 | 0.38 | 0.13 | 0.95 | 0.47 | 0.51 | 0.21 |
03 | 0.61 | 0.30 | 0.51 | 0.08 | 0.50 | 0.28 | 0.44 | 0.10 | 0.92 | 0.39 | 0.57 | 0.16 | |
06 | 0.47 | 0.25 | 0.46 | 0.08 | 0.38 | 0.24 | 0.36 | 0.10 | 0.66 | 0.33 | 0.50 | 0.16 | |
09 | 0.43 | 0.24 | 0.44 | 0.08 | 0.35 | 0.23 | 0.34 | 0.10 | 0.58 | 0.31 | 0.47 | 0.14 | |
12 | 0.41 | 0.24 | 0.40 | 0.08 | 0.35 | 0.23 | 0.35 | 0.09 | 0.57 | 0.29 | 0.49 | 0.12 | |
15 | 0.70 | 0.33 | 0.52 | 0.08 | 0.59 | 0.32 | 0.45 | 0.10 | 0.89 | 0.41 | 0.54 | 0.15 | |
18 | 0.82 | 0.40 | 0.51 | 0.10 | 0.68 | 0.39 | 0.43 | 0.13 | 1.09 | 0.50 | 0.54 | 0.18 | |
21 | 0.75 | 0.40 | 0.47 | 0.11 | 0.63 | 0.38 | 0.39 | 0.14 | 1.07 | 0.51 | 0.52 | 0.20 | |
R2 | 00 | 1.68 | 0.53 | 0.69 | 0.17 | 1.21 | 0.50 | 0.58 | 0.23 | 1.52 | 0.59 | 0.61 | 0.25 |
03 | 1.69 | 0.50 | 0.70 | 0.16 | 1.21 | 0.48 | 0.60 | 0.21 | 1.52 | 0.56 | 0.63 | 0.23 | |
06 | 1.34 | 0.44 | 0.67 | 0.16 | 0.95 | 0.42 | 0.56 | 0.21 | 1.22 | 0.50 | 0.59 | 0.24 | |
09 | 1.21 | 0.40 | 0.67 | 0.15 | 0.83 | 0.37 | 0.55 | 0.20 | 0.99 | 0.43 | 0.56 | 0.22 | |
12 | 0.90 | 0.32 | 0.64 | 0.14 | 0.62 | 0.28 | 0.54 | 0.16 | 0.81 | 0.33 | 0.59 | 0.17 | |
15 | 1.51 | 0.43 | 0.72 | 0.13 | 1.09 | 0.40 | 0.63 | 0.16 | 1.30 | 0.46 | 0.64 | 0.19 | |
18 | 2.02 | 0.60 | 0.70 | 0.15 | 1.52 | 0.58 | 0.62 | 0.21 | 1.79 | 0.67 | 0.63 | 0.23 | |
21 | 2.02 | 0.60 | 0.70 | 0.16 | 1.49 | 0.58 | 0.61 | 0.22 | 1.76 | 0.67 | 0.62 | 0.24 | |
R3 | 00 | 0.57 | 0.27 | 0.53 | 0.09 | 0.42 | 0.25 | 0.41 | 0.12 | 1.10 | 0.36 | 0.67 | 0.15 |
03 | 0.56 | 0.26 | 0.54 | 0.09 | 0.42 | 0.24 | 0.42 | 0.12 | 1.07 | 0.37 | 0.65 | 0.15 | |
06 | 0.46 | 0.23 | 0.49 | 0.08 | 0.34 | 0.22 | 0.36 | 0.11 | 0.93 | 0.37 | 0.60 | 0.18 | |
09 | 0.33 | 0.17 | 0.47 | 0.06 | 0.23 | 0.16 | 0.32 | 0.08 | 0.60 | 0.30 | 0.50 | 0.17 | |
12 | 0.23 | 0.12 | 0.45 | 0.04 | 0.16 | 0.10 | 0.35 | 0.05 | 0.49 | 0.21 | 0.57 | 0.11 | |
15 | 0.42 | 0.19 | 0.54 | 0.05 | 0.30 | 0.17 | 0.43 | 0.07 | 0.90 | 0.37 | 0.58 | 0.19 | |
18 | 0.79 | 0.30 | 0.63 | 0.07 | 0.56 | 0.28 | 0.50 | 0.10 | 1.43 | 0.48 | 0.66 | 0.18 | |
21 | 0.92 | 0.33 | 0.65 | 0.08 | 0.60 | 0.31 | 0.48 | 0.12 | 1.44 | 0.44 | 0.70 | 0.15 | |
R4 | 00 | 0.18 | 0.11 | 0.37 | 0.04 | 0.15 | 0.11 | 0.30 | 0.05 | 0.82 | 0.29 | 0.65 | 0.10 |
03 | 0.18 | 0.11 | 0.42 | 0.04 | 0.16 | 0.11 | 0.33 | 0.05 | 0.83 | 0.31 | 0.62 | 0.11 | |
06 | 0.20 | 0.12 | 0.40 | 0.04 | 0.17 | 0.12 | 0.29 | 0.05 | 0.65 | 0.34 | 0.48 | 0.15 | |
09 | 0.17 | 0.11 | 0.37 | 0.04 | 0.14 | 0.10 | 0.27 | 0.05 | 0.55 | 0.31 | 0.44 | 0.15 | |
12 | 0.18 | 0.11 | 0.37 | 0.03 | 0.15 | 0.10 | 0.31 | 0.04 | 0.63 | 0.26 | 0.59 | 0.09 | |
15 | 0.31 | 0.17 | 0.44 | 0.06 | 0.26 | 0.17 | 0.36 | 0.07 | 0.97 | 0.38 | 0.61 | 0.14 | |
18 | 0.48 | 0.22 | 0.55 | 0.06 | 0.39 | 0.22 | 0.44 | 0.08 | 1.39 | 0.42 | 0.70 | 0.12 | |
21 | 0.36 | 0.18 | 0.51 | 0.05 | 0.28 | 0.17 | 0.39 | 0.07 | 1.13 | 0.35 | 0.70 | 0.10 | |
R5 | 00 | 2.15 | 0.54 | 0.75 | 0.13 | 1.43 | 0.51 | 0.64 | 0.19 | 1.58 | 0.53 | 0.66 | 0.19 |
03 | 1.86 | 0.51 | 0.72 | 0.15 | 1.27 | 0.48 | 0.62 | 0.19 | 1.48 | 0.50 | 0.66 | 0.19 | |
06 | 1.62 | 0.51 | 0.69 | 0.16 | 1.13 | 0.48 | 0.58 | 0.21 | 1.29 | 0.50 | 0.61 | 0.21 | |
09 | 1.39 | 0.48 | 0.65 | 0.16 | 0.96 | 0.45 | 0.53 | 0.22 | 1.10 | 0.48 | 0.56 | 0.22 | |
12 | 1.30 | 0.42 | 0.68 | 0.14 | 0.82 | 0.36 | 0.56 | 0.17 | 0.93 | 0.37 | 0.60 | 0.17 | |
15 | 1.55 | 0.48 | 0.69 | 0.13 | 1.09 | 0.44 | 0.59 | 0.17 | 1.21 | 0.46 | 0.62 | 0.17 | |
18 | 2.28 | 0.69 | 0.70 | 0.13 | 1.66 | 0.66 | 0.60 | 0.21 | 1.77 | 0.69 | 0.61 | 0.21 | |
21 | 2.50 | 0.67 | 0.73 | 0.12 | 1.75 | 0.65 | 0.63 | 0.21 | 1.86 | 0.68 | 0.64 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siqueira, R.A.d.; Vila, D.A.; Afonso, J.M.d.S. The Performance of the Diurnal Cycle of Precipitation from Blended Satellite Techniques over Brazil. Remote Sens. 2021, 13, 734. https://doi.org/10.3390/rs13040734
Siqueira RAd, Vila DA, Afonso JMdS. The Performance of the Diurnal Cycle of Precipitation from Blended Satellite Techniques over Brazil. Remote Sensing. 2021; 13(4):734. https://doi.org/10.3390/rs13040734
Chicago/Turabian StyleSiqueira, Ricardo Almeida de, Daniel Alejandro Vila, and João Maria de Sousa Afonso. 2021. "The Performance of the Diurnal Cycle of Precipitation from Blended Satellite Techniques over Brazil" Remote Sensing 13, no. 4: 734. https://doi.org/10.3390/rs13040734
APA StyleSiqueira, R. A. d., Vila, D. A., & Afonso, J. M. d. S. (2021). The Performance of the Diurnal Cycle of Precipitation from Blended Satellite Techniques over Brazil. Remote Sensing, 13(4), 734. https://doi.org/10.3390/rs13040734