Multiple Kernel Graph Cut for SAR Image Change Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamentals of MKL
2.2. Introduction to KGC
2.3. Principles of the Proposed MKGC Algorithm
2.3.1. Energy Function of MKGC
2.3.2. Update of Kernel Weights
2.3.3. Update of Region Parameters
2.3.4. Update of Region Labels
2.4. Implementation of MKGC Change Detection Method
3. Results
3.1. Data Sets
3.2. Change Detection Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A. Digital Change Detection Techniques Using Remotely Sensed Data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.; Homayouni, S. A Novel Active Contours Model for Environmental Change Detection from Multitemporal Synthetic Aperture Radar Images. Remote Sens. 2020, 12, 1746. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, F.; Chen, P. A Framework of Spatio-temporal Fuzzy Clustering for Land-cover Change Detection using SAR Time Series. Int. J. Remote Sens. 2017, 28, 450–466. [Google Scholar] [CrossRef]
- Maltezos, E.; Ioannidis, C.; Doulamis, A.; Doulamis, N. Building Change Detection Using Semantic Segmentation on Analogue Aerial Photos. In Proceedings of the FIG Congress, Istanbul, Turkey, 6–11 May 2018. [Google Scholar]
- Chen, J.; Wang, R.; Ding, F.; Liu, B.; Jiao, L.; Zhang, J. A Convolutional Neural Network with Parallel Multi-Scale Spatial Pooling to Detect Temporal Changes in SAR Images. Remote Sens. 2020, 12, 1619. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Hou, B.; Liu, G. Using Combined Difference Image and k -Means Clustering for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 691–695. [Google Scholar] [CrossRef]
- Du, P.; Liu, S.; Gamba, P.; Tan, K.; Xia, J. Fusion of Difference Images for Change Detection Over Urban Areas. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 1076–1086. [Google Scholar] [CrossRef]
- Jia, L.; Li, M.; Zhang, P.; Wu, Y.; An, L.; Song, W. Remote-Sensing Image Change Detection With Fusion of Multiple Wavelet Kernels. IEEE Trans. Geosci. Remote Sens. 2016, 9, 3405–3418. [Google Scholar] [CrossRef]
- Liu, L.; Jia, Z.; Yang, J.; Kasabov, N.K. SAR Image Change Detection Based on Mathematical Morphology and the K-Means Clustering Algorithm. IEEE Access 2019, 7, 43970–43978. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Li, T.; Jiao, L.; Lu, G.; Marturi, N. Application of Data Driven Optimization for Change Detection in Synthetic Aperture Radar Images. IEEE Access 2020, 8, 11426–11436. [Google Scholar] [CrossRef]
- Bovolo, F.; Marchesi, S.; Bruzzone, L. A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2196–2212. [Google Scholar] [CrossRef]
- Sumaiya, M.N.; Ramapackiam, S.S.K. Unsupervised Change Detection of Flood affected areas in SAR images using Rayleigh based Bayesian Thresholding. IET Radar Sonar Nav. 2018, 12, 512–522. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Zheng, C.; Zhang, Y. A Markov Random Field Integrating Spectral Dissimilarity and Class Co-occurrence Dependency for Remote Sensing Image Classification Optimization. ISPRS J. Photogramm. Remote Sens. 2017, 128, 223–239. [Google Scholar] [CrossRef]
- Shang, Y.; Cao, G.; Zhang, Y. Change Detection Based on Fully-Connected Conditional Random Field with Region Potential in Remote Sensing Images. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5020–5107. [Google Scholar]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D.; Camps-Valls, G.; Kanevski, M. Unsupervised Change Detection With Kernels. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1026–1030. [Google Scholar] [CrossRef]
- Gong, M.; Yang, H.; Zhang, P. Feature Learning and Change Feature Classification Based on Deep Learning for Ternary Classification Change Detection in SAR Images. ISPRS J. Photogramm. Remote Sens. 2017, 129, 212–225. [Google Scholar] [CrossRef]
- Geng, J.; Ma, X.; Zhou, X.; Wang, H. Saliency-Guided Deep Neural Networks for SAR Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7365–7377. [Google Scholar] [CrossRef]
- Pham, M.G.; Mercier, G.; Michel, J. Change Detection between SAR Images Using a Pointwise Approach and Graph theory. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2020–2032. [Google Scholar] [CrossRef]
- Salah, M.B.; Mitiche, A.; Ayed, I.B. Multiregion Image Segmentation by Parametric Kernel Graph Cuts. IEEE Trans. Image Process. 2011, 20, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Chuang, Y.Y.; Chen, C.S. Multiple Kernel Fuzzy clustering. IEEE. Trans. Fuzzy Syst. 2004, 20, 120–134. [Google Scholar] [CrossRef] [Green Version]
- Boykov, Y.; Veksler, O.; Zabih, R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1222–1239. [Google Scholar] [CrossRef] [Green Version]
1. Input: |
SAR images and , class labels , kernel index |
2. Calculate the DI’s and with (15) and (16) |
3. Cluster into two classes using the k-means (KM) clustering algorithm |
4. Set the iteration number , initialize three parameters of MKGC: |
4.1 Initialize the region parameters as the class centers of KM |
4.2 Initialize the region labels as the output class labels of KM |
5. Free parameters estimation: |
5.1 Choose the first 5% pixels closest to two class centers as the samples |
5.2 Compute the initialized kernel weights with (11) |
5.3 With the initialized parameters of MKGC and features of the samples, estimate the parameters in (17) and in (5) by minimizing (5) with a gird search strategy in the range and |
6. Compute the kernel functions and with (17) and the estimated |
7. If the region labels are not converge, circularly do: |
7.1 , and update kernel weights with (7), (10) and (11) |
7.2 Update region labels with the method in Section 2.3.4. |
7.3 Update region parameters by the gradient descent of (13) |
8. Output the converged region labels as the change detection results |
Data Sets | Algorithms | OA | Execution Time (Seconds) | |
---|---|---|---|---|
Region A | SVM | 0.9431 | 0.7000 | 5.47 |
CNN | 0.9509 | 0.7321 | 223.00 | |
Subtraction image+KGC | 0.9037 | 0.5649 | 10.71 | |
Ratio image+KGC | 0.9540 | 0.6989 | 8.01 | |
MKGC | 0.9623 | 0.7691 | 12.77 | |
Region B | SVM | 0.9557 | 0.6961 | 2.32 |
CNN | 0.9334 | 0.5935 | 122.34 | |
Subtraction image+KGC | 0.9021 | 0.5119 | 9.85 | |
Ratio image+KGC | 0.9586 | 0.7160 | 5.57 | |
MKGC | 0.9685 | 0.8040 | 18.23 | |
Region C | SVM | 0.9340 | 0.3115 | 2.01 |
CNN | 0.9641 | 0.4900 | 97.79 | |
Subtraction image+KGC | 0.8007 | 0.1962 | 5.35 | |
Ratio image+KGC | 0.9574 | 0.3657 | 5.01 | |
MKGC | 0.9646 | 0.5999 | 7.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Zhang, T.; Fang, J.; Dong, F. Multiple Kernel Graph Cut for SAR Image Change Detection. Remote Sens. 2021, 13, 725. https://doi.org/10.3390/rs13040725
Jia L, Zhang T, Fang J, Dong F. Multiple Kernel Graph Cut for SAR Image Change Detection. Remote Sensing. 2021; 13(4):725. https://doi.org/10.3390/rs13040725
Chicago/Turabian StyleJia, Lu, Tiantian Zhang, Jing Fang, and Feibiao Dong. 2021. "Multiple Kernel Graph Cut for SAR Image Change Detection" Remote Sensing 13, no. 4: 725. https://doi.org/10.3390/rs13040725
APA StyleJia, L., Zhang, T., Fang, J., & Dong, F. (2021). Multiple Kernel Graph Cut for SAR Image Change Detection. Remote Sensing, 13(4), 725. https://doi.org/10.3390/rs13040725