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Abstract: Complementary information between two difference images (DI’s) has great contribution
to improve change detection performances. Based on the effectiveness and flexibility of the multiple
kernel learning (MKL) in information fusion, we develop a multiple kernel graph cut (MKGC)
algorithm for synthetic aperture radar (SAR) image change detection. An energy function containing
a weighted summation kernel is proposed for fusing the complementary information between the
subtraction image and the ratio image. By iteratively minimizing the energy function, the kernel
weights, region parameters and region labels are estimated automatically and optimally. Besides of it
avoids modeling, MKGC also has a complete description of the changed areas and the strong noise
immunity. Experiments on real GaoFen-3 SAR data set demonstrate the effectiveness of the MKGC
algorithm, and illustrate that it is a good candidate for SAR image change detection.

Keywords: change detection; GaoFen-3 synthetic aperture radar image; multiple kernel graph cut;
multiple kernel learning

1. Introduction

Change detection aims at identifying changes in images of the same scene taken
at different times [1]. It is a vital branch of remote sensing image interpretation, and it
is attracting a growing interest in civil and military applications, such as environment
monitoring, disaster prevention and relief, urban study and so on [2–5]. Synthetic aperture
radar (SAR) is insensitive to atmospheric and sun-illumination conditions, and it is an
effective tool for change detection tasks. As a representative of high-resolution SAR sensor,
Gaofen-3 SAR has great advantages in large scale and high-resolution earth observation.
However, with the increase of imaging resolution, many disturbances occur at backgrounds.
Moreover, speckle noise is still stubborn in SAR images. Therefore, SAR image change
detection techniques, which can comprehensively detect changed areas as well as resisting
speckle noise and background disturbances, still face technical challenges.

SAR image change detection can be carried out by binarily classifying a difference
image (DI). In the literature, the subtraction operation, ratio operation, and their improve-
ments, such as the mean-filtered subtraction, log-ratio, and mean-ratio are developed for
fitting varied practical applications [6,7]. Besides, fusing complementary information of
multiple DI’s is a valid solution for producing a powerful DI. In [6], a mean-filtered subtrac-
tion image and a median-filtered log-ratio image are fused for producing the smooth and
edge-preserved change maps. In [7], the subtraction, ratio, absolute Euclidean distance,
and chi-square transformation images are merged by using several decision-level fusion
schemes. Moreover, Jia, L., etc. [8] illustrates the prospect of fusing the subtraction image
and the ratio image, which provides implications for SAR image change detection.

Given the DI’s, a binary classification is implemented to get the change detection
results [9,10]. A number of methods have gain positive change detection results from
different perspectives. Statistical methods consider the statistical characteristics of the
DI’s to produce the optimal thresholds, which could directly divide the target areas into
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changed and unchanged ones [11,12]. By incorporating the regular contextual information
into the energy function, random field theories produce homogeneous detection areas and
strong noise resistance [13,14]. Kernel methods are powerful in dealing with non-linear
classification, and both the ratio-kernel based support vector machine (SVM) [15] and
kernelized clustering [16] have gain positive change detection results. The rise of deep
learning algorithms benefits from their ability in extracting deep and abstract features of
the DI’s. In many cases, the features extracted could produce high detection accuracies and
strong noise immunity [17,18]. However, it is hard to explain the meaning of the features.
Graph learning theory, as a powerful structural information extractor, is promising in SAR
image processing [19]. Abundant structural objects in high-resolution SAR images, such
as the buildings, rivers, farmlands, and specific targets, promote the application of graph
methods. Graph cut (GC) which avoids complex modeling of images is a prospective
learning machine. It depicts the structural features of the images well, and thus produce
high accuracies. Besides, the kernelized version, i.e., kernel graph cut (KGC), has more
powerful detection performance and low computational complexity [20]. By now, KGC has
not found wide applications in high-resolution SAR image change detection. Multiple
kernel learning (MKL), as one of the most important information fusion methods, could
improve the performances of the kernel methods by fusing complementary information
from different sources [21]. The ability of KGC in feature extraction and representation
and the speciality of MKL in information fusion may provide an important solution for
high-resolution SAR image change detection.

Motivated by the merits of the MKL and KGC, we are inspired to propose a powerful
unsupervised multiple kernel graph cut (MKGC) algorithm for SAR image change detec-
tion. MKGC first contributes in constructing a powerful energy function containing a data
term and a smoothness term. The data term fuses the complementary information between
the subtraction image and the ratio image by designing a weighted summation kernel
(WSK) function. The smoothness term preserves the region boundaries by restricting pixels
in the same region with similar labels. The energy function derives from the KGC and it
could be minimized with the idea of min-cut [22]. In MKGC, there are three parameters in
the energy function. Kernel weights of the WSK function determine the ability of fusing
the complementary information of the DI’s. Region parameters represent the core charac-
teristics of the regions, and they evaluate the deviation of the transformed data within the
regions. Region labels indicate the partition index, which could be optimized to output the
final detection results. The second contribution of MKGC is to propose an iterative opti-
mization strategy to calculate the three parameters. Based on the two efforts above, MKGC
realizes SAR image change detection in an unsupervised and optimized way. Moreover,
by unitedly considering the merits of KGC and MKL in feature extraction and information
fusion, MKGC simultaneously produces good preservation of the edges, comprehensive
description of the changed areas and strong noise and disturbance immunity. Experimental
results on GaoFen-3 SAR data sets verify the effectiveness of the MKGC in SAR image
change detection.

2. Materials and Methods

Given the bi-temporal SAR images {X(t)|t = t0, t1}, the MKGC change detection
method is realized with steps in Figure 1. As the core, the iterative optimization of MKGC
is shown in Figure 2. In the following, the construction and optimization of MKGC are
elaborated first. Then, the concrete implementation of the proposed change detection
method is described.
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2.1. Fundamentals of MKL

A kernel method utilizes a nonlinear mapping φ(·) from the input space to a high-
dimensional kernel space for increasing the representation capability of a linear ma-
chine [15]. Based on the kernel function K(xi, xj) =

〈
φ(xi), φ(xj)

〉
, a kernel method enables

the non-linear classification with a linear algorithm. The kernel function is the inner dot
between the mapped pixels

{
xi, xj

}
, and it can be constructed flexibly. The combination of

multiple kernels induces the MKL [21]. MKL which constructs a kernel function from a
number of basic kernels allows for a more flexible encoding of the knowledge from different
sources. Weighted summation kernel (WSK) is a common tool for MKL, and automatic
calculation of the kernel weights is the key. MKL has been widely studied in classification
and change detection tasks.

2.2. Introduction to KGC

KGC is the kernel version of the graph cut [20]. It is more general for image clas-
sification by avoiding seeking the accurate image models. The energy function of KGC
consists of a data term and a smoothness term. The data term measures the deviation of
the image data from the classification regions in the kernel space, while the smoothness
term polishes region boundaries with the differences between region indices. KGC does
image classification by minimizing the following energy function:

FKGC = ∑
l∈L

∑
xi∈l

Dil + αR, (1)

Dil = ‖φ(xi)− φ(µl)‖2, R = ∑
{xi ,xj}∈N

r
(
L(xi),L(xj)

)
, (2)

where α is a positive parameter balancing the data term Dil and the smoothness term R.
{xi, i = 1 : I} are the image pixels. L = {l|L(xi) = l, ∀xi} is the collection of region labels.
µl is the constant parameter of the region (class) l. N is the neighborhood set containing
all pairs of neighboring pixels. By applying the kernel substitution, the data term becomes

Dil = K(µl , µl)− 2K(µl , xi) + K(xi, xi). (3)

The smoothness term is calculated with the truncated squared absolute difference between
the region parameters:

r
(
L(xi),L(xj)

)
= min

(
const2,

∣∣∣µL(xi)
− µL(xj)

∣∣∣). (4)



Remote Sens. 2021, 13, 725 4 of 10

const is a constant [20]. With respect to the minimization of FKGC, KGC realizes classifica-
tion by iteratively optimizing the region labels and the region parameters.

2.3. Principles of the Proposed MKGC Algorithm

By improving KGC with MKL, a MKGC classifier is proposed in this paper for fusing
multiple DI’s in change detection tasks. Suppose {DIm, m = 1 . . . M} are the DI’s that are
fused. φm(·) is the kernel mapping function corresponding to DIm. MKGC is constructed
and optimized as follows.

2.3.1. Energy Function of MKGC

In MKGC, MKL is incorporated into the energy function for fusing the complementary
features of multiple DI’s in the kernel spaces. The energy function of MKGC is

FMKGC = ∑
l∈L

∑
xi∈l

∑
m

ωm
2Dilm + αR, (5)

Dilm = ‖φm(xi)− φm(µl)‖2, ∑
m

ωm = 1, ωm ≥ 0, ∀m. (6)

R is same as that in (2). By applying the kernel substitution, the mth data term becomes

Dilm = Km(µl , µl)− 2Km(µl , xi) + Km(xi, xi). (7)

Km is the mth kernel function corresponding to the mapping function φm, and wm is the
kernel weight. Dilm measures the deviation between the pixel xi and the constant region
parameter µl in the mth kernel space.

In MKGC, region parameters, region labels and kernel weights should be updated.
Fixing two parameters, the other one can be optimized or updated by minimizing (5).

2.3.2. Update of Kernel Weights

Given the region parameters and region labels, we apply a Lagrange multiplier under
the constraint ∑

m
ωm = 1 to estimate the kernel weights:

Fω
MKGC = ∑

l∈L
∑
xi∈l

∑
m

ωm
2Dilm + αR− 2λ

(
∑
m

ωm − 1

)
. (8)

Taking the partial derivative of Fω
MKGC with respect to ωm, we have

∂Fω
MKGC

∂ωm
= ∂

∂ωm

(
∑
m

ω2
mβm

)
− ∂

∂ωm

(
2λ

(
∑
m

ωm − 1
))

= 2βmωm − 2λ
, (9)

where
βm = ∑

l∈L
∑
xi∈l

Dilm. (10)

Setting the derivative to zero, we get ωm = λ/βm.

Since
M
∑

m=1
ωm = (λ/β1 + λ/β2 . . . + λ/βm + . . . + λ/βM) = 1, we get the kernel

weights as the harmonic mean [21]:

ωm = (1/βm)/(1/β1 + 1/β2 . . . + 1/βm). (11)
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2.3.3. Update of Region Parameters

Given the region labels and kernel weights, regions parameters are optimized by
computing the partial derivative of FMKGC with respect to µl :

∂FMKGC
∂µl

= ∑
xi∈l

∂
∂µl

(
∑
m

ωm
2‖φm(xi)− φm(µl)‖2

)
+ α · ∂

∂µl

(
∑

{xi ,xj}∈N
r
(
L(xi),L(xj)

))
= ∑

xi∈l

∂
∂µl

(
∑
m

ωm
2(Km(µl , µl)− 2Km(µl , xi))

)
+ α · ∑

{xi, xj} ∈ N ,L(xi) = l
µL(xi)

− µL(xj)
< const

µL(xi)
− µL(xj)

, (12)

The variables and the formulations in (7) and in (2) are directly substituted into (12).
Following the work [20], the region parameters regarding to the minimization of (5) are
derived by the gradient descent of the following equation:

µl −

∑
xi∈l

∑
m

ωm
2xiKm(µl , xi) + α ∑

xi∈Cl

∑
xj∈Ñi

µL(xj)

∑
xi∈l

∑
m

ωm2Km(µl , xi) + α ∑
xi∈Cl

#Ñi
= 0, l ∈ L (13)

Ni is the set of the four horizontally and vertically adjacent pixels neighboring xi. Ñi is the
set of pixels inNi which satisfy L(xi) 6= L(xj),

∣∣∣µL(xi)
− µL(xj)

∣∣∣ < const. Cl is the boundary
of the region l. # is the set cardinality.

2.3.4. Update of Region Labels

With respect to the region parameters and kernel weights, regions labels are up-
dated by the graph cut optimization. Let G = {V , E} be a graph. V is the set of nodes
(image pixels) containing two terminals, and E is the set of edges with non-negative
weights. A cut is a subset of edges C ∈ E which separates terminals on an induced graph
G(C) = 〈V , E/C〉. The cost of a cut is defined as the sum of its edge weights, and the graph
cut aims to find a minimum cut with the lowest cost.

With respect to the local minimum of FMKGC, the minimum cut can be obtained by
the combinatorial optimization with swap-moves [22]. Let {ξ, θ} be the collection of labels
of the two terminals, swap moves find the minimum cut of a subgraph Gξ,θ =

{
Vξ,θ , Eξ,θ

}
.

Vξ,θ contains the two terminals. Eξ,θ contains the edges between nodes in Vξ,θ . In each
iteration, the edge weights are dynamically set with the following equation:

for xi, xj ∈ Pξ,θ ,
{

xi, xj
}
∈ N :

vxi ,xj = r
(
L
(
xj
)
,L
(
xj
))

for xi ∈ Pξ,θ :
vxi ,θ = ∑

m
ωm

2‖φm(xi)− φm
(
µθ

)
‖2

+ ∑
xj∈Ni ,xj /∈ξ,θ

r
(
L
(

xj
)
, θ
)

for xi ∈ Pξ,θ :

vxi ,ξ = ∑
m

ωm
2‖φm(xi)− φm

(
µξ

)
‖

2
+ ∑

xj∈Ni ,xj /∈ξ,θ
r
(
L
(
xj
)
, ξ
)

, (14)

where Pξ,θ is the set of the pixels labeled as ξ and θ. vxi ,ξ is the edge weight between the
pixel xi ∈ Pξ,θ and the terminal of ξ.

2.4. Implementation of MKGC Change Detection Method

In the proposed MKGC method, the subtraction image and the ratio image are fused.
The two DI’s is computed by comparing gray values of the bi-temporal images pixel-by-
pixel. They are:

DIS(xi) =
∣∣∣xi

(t0) − xi
(t1)
∣∣∣, (15)
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DIR(xi) =
max(xi

(t0), xi
(t1))

min(xi
(t0), xi

(t1)) + eps
. (16)

DIS = {DIS(xi), ∀xi} and DIR = {DIR(xi), ∀xi} are the subtraction and ratio images.
eps is a small value used for avoiding the occurrence of a singularity when the denominator
becomes zero. The raw SAR images and the DI’s should be normalized.

It has been illustrated in [8] that the subtraction image and ratio image have com-
plementary information. The subtraction image reflects the changed areas evenly and
completely, and the ratio image suppresses the disturbances at unchanged backgrounds
more heavily. For SAR images contaminated by speckle noise, a similar conclusion can be
obtained, which will be analyzed in the following experiments.

Given the two DI’s, two kernel matrices are constructed. The radial basis function
(RBF) kernel given by (17) is utilized for producing two kernels KS and KR. σ is the kernel
width that needs to be tuned.

Krb f (xi, xj) = exp(−‖xi − xj‖2/2σ2) (17)

In Table 1, the complete procedure of the MKGC change detection method is summarized.

Table 1. Steps of MKGC change detection algorithm.

1. Input:
SAR images X(t0) and X(t1), class labels l = 1, 2, kernel index m = 1, 2
2. Calculate the DI’s DIS and DIR with (15) and (16)
3. Cluster DIR into two classes using the k-means (KM) clustering algorithm
4. Set the iteration number ite = 0, initialize three parameters of MKGC:
4.1 Initialize the region parameters µl

ite as the class centers of KM
4.2 Initialize the region labels Lite as the output class labels of KM
5. Free parameters estimation:
5.1 Choose the first 5% pixels closest to two class centers as the samples
5.2 Compute the initialized kernel weights ωm

ite with (11)
5.3 With the initialized parameters of MKGC and features of the samples, estimate the parameters
σ in (17) and α in (5) by minimizing (5) with a gird search strategy in the range
σ =

{
10−3, . . . , 103} and α = {0, . . . , 1}

6. Compute the kernel functions KS and KR with (17) and the estimated σ
7. If the region labels are not converge, circularly do:
7.1 ite = ite + 1, and update kernel weights ωm

ite with (7), (10) and (11)
7.2 Update region labels Lite with the method in Section 2.3.4.
7.3 Update region parameters µl

ite by the gradient descent of (13)
8. Output the converged region labels as the change detection results

3. Results
3.1. Data Sets

In this letter, a set of bi-temporal high-resolution SAR images with 2058 × 2758 pixels
(shown in Figure 3) is utilized for illustrating the validity and popularity of the proposed
MKGC method. The images are acquired in January 2017 and in October 2017 by the
Gaofen-3 SAR sensor around the Huaihe River in Anhui province, China. The image reso-
lution is 5m. The changes are caused by a flood event and some farming activities. In the
experiments, three regions marked by red rectangles A, B and C are utilized. In regions
A and B, the fields are flooded, and the river widths are slightly increased. In region C,
a water region is changed into a farmland. The image sizes are 702 × 502, 420 × 380 and
380 × 274. The zoom-in images are shown in Figure 4(a1)–(c2). Before change detection,
the two images are co-registered, and the registration is performed at a sub-pixel level.
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ratio images. (a8)–(c8) Change maps resulted from KGC with subtraction images. (a9)–(c9) Change maps resulted from
KGC with ratio images. (a10)–(c10) Change maps resulted from MKGC.
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3.2. Change Detection Results

The proposed MKGC algorithm is compared with four methods. They are the ratio
kernel-based SVM [15], the CNN [17] acting on the ratio images, and the subtraction and ra-
tio images classified by the KGC [20]. The SVM and the CNN methods are supervised meth-
ods, and they use the same samples as those selected in step 5.1 Table 1. In SVM, the kernel
width and regularization parameter of SVM need to be tuned and they are selected with
a grid search strategy in the range σ =

{
10−3, . . . , 103} and C =

{
10−3, . . . , 103} [15].

In CNN, the 27 × 27 patches surrounding the samples are trained. Three convolution lay-
ers and two pooling layers are used. There are 20 kernels in each layer, and the kernel-sizes
in the three convolution layers are 4 × 4, 5 × 5 and 4 × 4. The pooling size is 2 × 2 [17].
To subjectively evaluate the change detection results, final detection results are shown
as binary change maps. Black pixels form the unchanged areas and white pixels form
the changed areas. For an objective evaluation of the final results, overall accuracy (OA)
and kappa coefficient (κ) are calculated by comparing the change maps with the reference
images. The reference images are defined manually. Subjective results are given in Figure 4
and quantitative precisions are given in Table 2. Moreover, the execution time is given in
Table 2 to show the efficiency of the methods.

Table 2. Objective evaluation. Overall Accuracy (OA), Kappa Coefficient (κ) and Execution time.
Bold numbers are results of MKGC method.

Data Sets Algorithms OA κ
Execution Time

(Seconds)

Region A

SVM 0.9431 0.7000 5.47

CNN 0.9509 0.7321 223.00

Subtraction
image+KGC 0.9037 0.5649 10.71

Ratio
image+KGC 0.9540 0.6989 8.01

MKGC 0.9623 0.7691 12.77

Region B

SVM 0.9557 0.6961 2.32

CNN 0.9334 0.5935 122.34

Subtraction
image+KGC 0.9021 0.5119 9.85

Ratio
image+KGC 0.9586 0.7160 5.57

MKGC 0.9685 0.8040 18.23

Region C

SVM 0.9340 0.3115 2.01

CNN 0.9641 0.4900 97.79

Subtraction
image+KGC 0.8007 0.1962 5.35

Ratio
image+KGC 0.9574 0.3657 5.01

MKGC 0.9646 0.5999 7.37

4. Discussion

In this section, performance of the proposed method is discussed and analyzed.
First, the complementary information between the two DI’s is shown and analyzed.
Figure 4(a3)–(c3) and (a4)–(c4) show the subtraction and the ratio images. In SAR im-
age processing, speckle noise is a crucial and inevitable factor that hinders the change
detection results. Besides, complicated backgrounds, such as the dense urban regions
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and varied farmlands, also bring some disturbances. From the results, it is obvious that
the subtraction image reflects the changed areas more evenly and completely, while the
ratio image highlights the extremely large changes and suppresses the moderate changes
caused by the disturbances and noise. In other word, the subtraction image has a good
description of the changed areas, and the ratio image provides clean and less contaminated
unchanged regions.

Change detection results obtained by the five methods are shown in Figure 4 (a6)–(c10).
Obviously, SVM produces some false alarms at the changed areas, and the ratio operation
in the kernel space provides it with certain noise resistance. CNN has outstanding noise
immunity, because it effectively extracts the high-level abstract features of the ratio images.
However, details in changed regions, e.g., the slightly increased river widths, may be
lost by CNN. KGC with subtraction images provides complete changed areas. However,
the heavy disturbances and noise at backgrounds bring so many false alarms. Results by
KGC with ratio images provide clean unchanged regions. However, many miss alarms
occur. Thus, it can be safely concluded that the change detection results by KGC rely on
the performances of the DI’s. From Figure 4(a10)–(c10), it can be seen that the MKGC
method produces convincing results by merging the advantages of the two DI’s. It produces
changed areas more completely. The details and edges of changed areas are detected well.
Besides, it limits false alarms at unchanged areas, that is MKGC has strong disturbances
and noise resistance. Quantitative results are shown in Table 2. Evidently, the MKGC
method gives relatively high OA values and κ values.

The computational efficiency of the five methods is shown in Table 2 too. SVM and
CNN are supervised methods, and they consume a significant amount of time for the
training processes. Therefore, their efficiency shown in Table 2 is the time consumed by
the testing processes (the elapsed time of the training processes is not included). The KGC
and MKGC methods are unsupervised. Compared with KGC, the extra time of MKGC
is mainly caused by the fusion of the kernels. For region A and region C, 3 iterations
are sufficient for MKGC to reach convergence. For region B, 5 iterations are needed.
In MKGC, the number of the samples in step 5.1 is defined by experience. It influences
the initialization of the parameters σ in (17) and α in (5). As long as the samples are
reliable, the parameters computed are reliable, as well as the final results. In a word, all the
improvements demonstrate the effectiveness and efficiency of the proposed MKGC method
in SAR image change detection.

5. Conclusions

In this paper, we have proposed a MKGC method for SAR image change detection.
The method has fused the complementary information between the subtraction image and
the ratio image in the kernel spaces, which could dramatically improve the discrimination
of changed areas and the noise immunity in unchanged regions. Iterative update of the
kernel weights, the region parameters and the region labels are the core optimization. Ex-
perimental results on real GaoFen-3 SAR data sets prove that the MKGC method produces
competitive change detection results. It has unusual ability in detecting changed areas,
in preserving edges and in resisting speckle noise. Future works will consider the SAR
image change detection methods based on new MKL classifiers.
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