Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin
Abstract
:1. Introduction
- Analyze the spatial trends of three parameters (LAI, FVC and GPP) that can be considered as representative of the growth condition of surface vegetation in the study region using Mann–Kendall and Sen’s slope methods to understand the spatial variability of vegetation growth conditions.
- Explore the spatial autocorrelation characteristics of vegetation indexes in the ARB, based on the results derived from Moran’s I technique on remotely sensed vegetation information, for determining the rapid shift of eco-system changes over previous decades.
- Utilize partial least squares regression (PLSR) and geographical and temporal weighted regression (GTWR) models to further evaluate the relationships between land surface parameters and climatic factors, land use/cover types, and hydrological variables simulated with the soil and water assessment tool (SWAT) model in the ARB to clarify spatial–temporal vegetation dynamics and their relationships with climatic, anthropogenic, and hydrological factors in the Amur River Basin.
2. Study Area
3. Materials and Methods
3.1. Datasets
3.2. Methods
3.2.1. Time Trend Analysis
3.2.2. Spatial Autocorrelation Analysis
3.2.3. GTWR
4. Results
4.1. Spatial–Temporal Variations in Vegetation in the ARB
4.2. Spatial Autocorrelation Analysis of Vegetation Dynamics in the ARB
4.3. The Relationships between Vegetation Dynamics and Changes in Climatic, Anthropogenic, and Hydrological Factors
4.3.1. Regional Impacts of Climate Changes on Vegetation
4.3.2. Regional Impacts of Land Use Changes on the Vegetation
4.3.3. Spatial–Temporal Heterogeneity of the Relationships between Vegetation Dynamics and Hydrological Variables
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, W.F.; Kuang, T.T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Liu, X.X.; Tian, Z.X.; Zhang, A.B.; Zhao, A.Z.; Liu, H.X. Impacts of Climate on Spatiotemporal Variations in Vegetation NDVI from 1982–2015 in Inner Mongolia, China. Sustainability 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Ye, A.Z. Spatial and temporal variations in vegetation coverage observed using AVHRR GIMMS and Terra MODIS data in the mainland of China. Int. J. Remote Sens. 2020, 41, 4238–4268. [Google Scholar] [CrossRef]
- Karasiak, N.; Dejoux, J.F.; Fauvel, M.; Willm, J.; Monteil, C.; Sheeren, D. Statistical Stability and Spatial Instability in Mapping Forest Tree Species by Comparing 9 Years of Satellite Image Time Series. Remote Sens. 2019, 11, 2512. [Google Scholar] [CrossRef] [Green Version]
- Akujärvi, A.; Lehtonen, A.; Liski, J. Ecosystem services of boreal forests—Carbon budget mapping at high resolution. J. Environ. Manag. 2016, 181, 498–514. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Zhao, A.Z.; Zhang, A.B.; Lu, C.Y.; Wang, D.L.; Wang, H.F.; Liu, H.X. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecol. Eng. 2017, 104, 13–22. [Google Scholar] [CrossRef]
- Du, Z.Q.; Zhao, J.; Pan, H.H.; Wu, Z.T.; Zhang, H. Responses of vegetation activity to the daytime and nighttime warming in Northwest China. Environ. Monit. Assess. 2019, 191, 10. [Google Scholar] [CrossRef] [PubMed]
- Gribovszki, Z.; Kalicz, P.; Balog, K.; Szabó, A.; Tóth, T.; Csáfordi, P.; Metwaly, M.; Szalai, S. Groundwater uptake of different surface cover and its consequences in great Hungarian plain. Ecol. Process. 2017, 6, 39. [Google Scholar] [CrossRef]
- Yang, Y.J.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.L.; Wang, Z.Y. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Wu, T.; Feng, F.; Lin, Q.; Bai, H.M. Advanced Method to Capture the Time-Lag Effects between Annual NDVI and Precipitation Variation Using RNN in the Arid and Semi-Arid Grasslands. Water 2019, 11, 1789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, J.M.; Li, S.J. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Hua, L.; Wang, H.D.; Sui, H.G.; Wardlow, B.; Hayes, M.J.; Wang, J.X. Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region. Remote Sens. 2019, 11, 1873. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Black, T.A. Measuring leaf-area index of plant canopies with branch architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Li, X.J.; Qu, Y. Evaluation of Vegetation Responses to Climatic Factors and Global Vegetation Trends using GLASS LAI from 1982 to 2010. Can. J. Remote Sens. 2018, 44, 357–372. [Google Scholar] [CrossRef]
- Reygadas, Y.; Jensen, J.L.R.; Moisen, G.G.; Currit, N.; Chow, E.T. Assessing the relationship between vegetation greenness and surface temperature through Granger causality and Impulse-Response coefficients: A case study in Mexico. Int. J. Remote Sens. 2020, 41, 3761–3783. [Google Scholar] [CrossRef]
- Verger, A.; Camacho, F.; García-Haro, F.J.; Meliá, J. Prototyping of Land-SAF leaf area index algorithm with VEGETATION and MODIS data over Europe. Remote Sens. Environ. 2009, 113, 2285–2297. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived From MODIS and AVHRR Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Liu, D.Y.; Jia, K.; Wei, X.Q.; Xia, M.; Zhang, X.W.; Yao, Y.J.; Zhang, X.T.; Wang, B. Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products. Remote Sens. 2019, 11, 2524. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.J.; Yang, H.F.; Li, J.L.; Chen, Y.Z.; Gang, C.C.; Zhou, W.; Ju, W.M. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. J. Geogr. Sci. 2013, 23, 231–246. [Google Scholar] [CrossRef]
- Yunhao, C.; Peijun, S.; Xiaobing, L.; Jin, C.; Jing, L. A combined approach for estimating vegetation cover in urban/suburban environments from remotely sensed data. Comput. Geosci. 2006, 32, 1299–1309. [Google Scholar] [CrossRef]
- Xu, H.J.; Zhao, C.Y.; Wang, X.P. Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China. Agric. For. Meteorol. 2019, 276, 15. [Google Scholar] [CrossRef]
- Yao, Y.T.; Wang, X.H.; Li, Y.; Wang, T.; Shen, M.G.; Du, M.Y.; He, H.L.; Li, Y.N.; Luo, W.J.; Ma, M.G.; et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob. Chang. Biol. 2018, 24, 184–196. [Google Scholar] [CrossRef]
- Schaefer, K.; Schwalm, C.R.; Williams, C.; Arain, M.A.; Barr, A.; Chen, J.M.; Davis, K.J.; Dimitrov, D.; Hilton, T.W.; Hollinger, D.Y.; et al. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. J. Geophys. Res. Biogeosci. 2012, 117, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.Y.; Ma, J.; Zhao, B.; Wang, X.X.; Zong, J.M.; Xiao, X.M. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 12. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth. Obs. Geoinf. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Tong, S.Q.; Zhang, J.Q.; Ha, S.; Lai, Q.; Ma, Q.Y. Dynamics of Fractional Vegetation Coverage and Its Relationship with Climate and Human Activities in Inner Mongolia, China. Remote Sens. 2016, 8, 776. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.Z.; Zhang, A.B.; Liu, J.H.; Feng, L.L.; Zhao, Y.L. Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. Catena 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Zhou, Y.; Pei, F.S.; Xia, Y.; Wu, C.J.; Zhong, R.; Wang, K.; Wang, H.L.; Cao, Y. Assessing the Impacts of Extreme Climate Events on Vegetation Activity in the North South Transect of Eastern China (NSTEC). Water 2019, 11, 2291. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.Y.; Liu, X.N.; Wu, L.; Liu, M.L.; Zhang, B.Y.; Zhao, S. Spatio-temporal variation indicators for landscape structure dynamics monitoring using dense normalized difference vegetation index time series. Ecol. Indic. 2019, 107, 11. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Pena-Gallardo, M.; Tomas-Burguera, M.; Dominguez-Castro, F.; Martin-Hernandez, N.; Begueria, S.; El Kenawy, A.; Noguera, I.; Garcia, M. A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Nat. Hazards Earth Syst. 2019, 19, 1189–1213. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, D.E.; Ganguly, S.; Krishnaswamy, J.; Duffy, K.; Nemani, R.; Ghosh, S. Multi-Scale Association between Vegetation Growth and Climate in India: A Wavelet Analysis Approach. Remote Sens. 2019, 11, 2703. [Google Scholar] [CrossRef] [Green Version]
- Simonov, E.A.; Dahmer, T.D. Amur-Heilong River Basin Reader; Ecosystems Hongkong: Hong Kong, China, 2008. [Google Scholar]
- Haruyama, S.; Shiraiwa, T. Environmental Change and the Social Response in the Amur River Basin; Springer: Berlin/Heidelberg, Germany, 2014; Volume 5. [Google Scholar]
- Dai, C.; Wang, S.; Li, Z.; Zhang, Y.; Gao, Y.; Li, C. Review on hydrological geography in Heilongjiang River Basin. Acta Geogr. Sin. 2015, 70, 1823–1834. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Yan, B.; Xia, Z.; Huang, F.; Guo, L.; Zhang, X. Climate Change Detection and Annual Extreme Temperature Analysis of the Amur River Basin. Adv. Meteorol. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Novorotskii, P. Climate changes in the Amur River basin in the last 115 years. Russ. Meteorol. Hydrol. 2007, 32, 102–109. [Google Scholar] [CrossRef]
- Zou, Y.C.; Wang, L.Y.; Xue, Z.S.; E, M.J.; Jiang, M.; Lu, X.G.; Yang, S.D.; Shen, X.J.; Liu, Z.M.; Sun, G.Z.; et al. Impacts of Agricultural and Reclamation Practices on Wetlands in the Amur River Basin, Northeastern China. Wetlands 2018, 38, 383–389. [Google Scholar] [CrossRef]
- Cui, M. Status quo of Wetlands of Heilongjiang River Valley and the Protection (in Chinese). For. Inventory Plan. 2006, 1, 75–78. [Google Scholar] [CrossRef]
- Mao, D.H.; He, X.Y.; Wang, Z.M.; Tian, Y.L.; Xiang, H.X.; Yu, H.; Man, W.D.; Jia, M.M.; Ren, C.Y.; Zheng, H.F. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean Prod. 2019, 240, 11. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Luo, L.; Ren, C.Y. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Tu, M.Z.; Liu, Z.F.; He, C.Y.; Fang, Z.H.; Lu, W.L. The relationships between urban landscape patterns and fine particulate pollution in China: A multiscale investigation using a geographically weighted regression model. J. Clean Prod. 2019, 237, 16. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience Australia: Canberra, Australia, 2008. [Google Scholar]
- Le Maitre, D.C.; Scott, D.F.; Colvin, C. A review of information on interactions between vegetation and groundwater. Water SA 1999, 25, 137–152. [Google Scholar]
- Ludwig, J.A.; Wilcox, B.P.; Breshears, D.D.; Tongway, D.J.; Imeson, A.C. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 2005, 86, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.F.; Li, C.H.; Huang, G.H.; Cai, Y.P. Analysis of relationships between NDVI and climatic/hydrological parameters in the Yellow River basin. Int. J. Environ. Pollut. 2010, 42, 166–183. [Google Scholar] [CrossRef]
- Zha, F.; Liu, C.; Shi, R. Elevation Cluster Dataset Covering the Amur River Basin. Global Chang. Data Repos. 2016, 1. [Google Scholar] [CrossRef]
- Yuefei, H.; Tiejian, L.; Enze, L.; Jiaye, L.; Rui, B.; Chuang, L.; Ruixiang, S. Boundary Data of the Amur River Basin. Glob. Chang. Data Repos. 2016, 1. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B.; et al. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD 15) Algorithm Theoretical Basis Document-1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 18 February 2020).
- Shabanov, N.V.; Huang, D.; Yang, W.Z.; Tan, B.; Knyazikhin, Y.; Myneni, R.B.; Ahl, D.E.; Gower, S.T.; Huete, A.R.; Aragao, L.; et al. Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Kogan, F.N.; Guo, W.; Tarpley, J.D.; Mitchell, K.E.; Ek, M.B.; Tian, Y.; Zheng, W.; Zou, C.-Z.; Ramsay, B.H. Real-time weekly global green vegetation fraction derived from advanced very high resolution radiometer-based NOAA operational global vegetation index (GVI) system. J. Geophys. Res. Atmos. 2010, 115, D11114. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, W.L.; Milesi, C.; White, M.A.; Ganguly, S.; Gamo, M.; Hirata, R.; Myneni, R.B.; Nemani, R.R. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data. Remote Sens. 2012, 4, 303–326. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Q.; Chen, H.; Fu, Y.; Niu, H.H.; Yang, Y.; Zhang, B.X. Fractional Vegetation Cover Estimation of Different Vegetation Types in the Qaidam Basin. Sustainability 2019, 11, 864. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, S.G.; Yu, G.R.; Bonnefond, J.M.; Chen, J.Q.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.L.; Zhang, W.C.; Guo, Y.D. Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin. Water 2020, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.F.; Yan, B.X.; Muneoki, Y. Effects of land use and changes in cover on the transformation and transportation of iron: A case study of the Sanjiang Plain, Northeast China. Sci. China Earth Sci. 2011, 54, 686–693. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Tong, S.Q.; Zhang, J.Q.; Bao, Y.H.; Lai, Q.; Lian, X.; Li, N.; Bao, Y.B. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018, 28, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin’s streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & Co. Ltd.: London, UK, 1975; p. 160. [Google Scholar]
- Sneyers, R. Sur l’Analyse Statistique des Séries d’Observations; Secrétariat de l’Organisation Météorologique Mondiale: Geneva, Switzerland, 1975. [Google Scholar]
- Bei, X.Y.; Yao, Y.J.; Zhang, L.L.; Xu, T.R.; Jia, K.; Zhang, X.T.; Shang, K.; Xu, J.; Chen, X.W. Long-Term Spatiotemporal Dynamics of Terrestrial Biophysical Variables in the Three-River Headwaters Region of China from Satellite and Meteorological Datasets. Remote Sens. 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tian, F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J. Hydrol. 2009, 374, 373–383. [Google Scholar] [CrossRef]
- Moraes, J.M.; Pellegrino, G.Q.; Ballester, M.V.; Martinelli, L.A.; Victoria, R.L.; Krusche, A.V. Trends in Hydrological Parameters of a Southern Brazilian Watershed and its Relation to Human Induced Changes. Water Resour. Manag. 1998, 12, 295–311. [Google Scholar] [CrossRef]
- Gerstengarbe, F.W.; Werner, P.C. Estimation of the beginning and end of recurrent events within a climate regime. Clim. Res. 1999, 11, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.Y.; Ni, J.R.; Borthwick, A.G.L. Recent changes of water discharge and sediment load in the Yellow River basin, China. Prog. Phys. Geogr. 2010, 34, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; He, J.W.; Liu, Y.; Wang, D.J.; Rafay, L.; Chen, C.; Hong, T.; Fan, H.L.; Lin, Y.M. Spatial Autocorrelation Analysis of Multi-Scale Damaged Vegetation in the Wenchuan Earthquake-Affected Area, Southwest China. Forests 2019, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Walker, I.J.; Eamer, J.B.R.; Darke, I.B. Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem. Geomorphology 2013, 199, 192–204. [Google Scholar] [CrossRef]
- Nelson, T.A.; Boots, B. Detecting spatial hot spots in landscape ecology. Ecography 2008, 31, 556–566. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Li, R. The contributions of socioeconomic indicators to global PM2.5 based on the hybrid method of spatial econometric model and geographical and temporal weighted regression. Sci. Total Environ. 2020, 703, 135481. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.W.; Gu, L.; Yao, S.B.; Deng, Y.J. Effects of bio-physical, economic and ecological policy on forest transition for sustainability of resource and socioeconomics development. J. Clean Prod. 2020, 243, 10. [Google Scholar] [CrossRef]
- Zhang, D.J.; Ge, W.Y.; Zhang, Y. Evaluating the vegetation restoration sustainability of ecological projects: A case study of Wuqi County in China. J. Clean Prod. 2020, 264, 17. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, X.X.; Zhou, Y.; Zhao, C.J.; Du, Z.H.; Liu, R.Y. Ecosystem health assessment in coastal waters by considering spatio-temporal variations with intense anthropogenic disturbance. Environ. Model. Softw. 2017, 96, 128–139. [Google Scholar] [CrossRef]
- Moons, E.; Brijs, T.; Wets, G. Hot Spot Analysis: Improving a Local Indicator of Spatial Association for Application in Traffic Safety; Springer: Berlin/Heidelberg, Germany; pp. 221–231.
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial. Spat. Anal. 1996, 4, 111. [Google Scholar]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Spatio-temporal patterns in green infrastructure as driver of land surface temperature variability: The case of Sydney. Int. J. Appl. Earth. Obs. Geoinf. 2019, 83, 17. [Google Scholar] [CrossRef]
- Gao, J.; Wang, L.C. Embedding spatiotemporal changes in carbon storage into urban agglomeration ecosystem management—A case study of the Yangtze River Delta, China. J. Clean Prod. 2019, 237, 12. [Google Scholar] [CrossRef]
- Zhang, C.S.; Luo, L.; Xu, W.L.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef]
- Yuan, Y.M.; Cave, M.; Zhang, C.S. Using Local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of London. Appl. Geochem. 2018, 88, 167–178. [Google Scholar] [CrossRef]
- Chaikaew, N.; Tripathi, N.K.; Souris, M. Exploring spatial patterns and hotspots of diarrhea in Chiang Mai, Thailand. Int. J. Health Geogr. 2009, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, W.; Liang, L.W.; Wang, D.P.; Cui, X.H.; Wei, W.D. Spatial-temporal pattern evolution and driving factors of China’s energy efficiency under low-carbon economy. Sci. Total Environ. 2020, 739, 12. [Google Scholar] [CrossRef]
- Li, E.K.; Lu, Y.Q.; Chen, Y. Geographic pattern evolution of China’s merchandise export and its influencing factors: Based on the analysis of merchandise export distance and the GTWR model. Geogr. Res. 2019, 38, 2624–2638. [Google Scholar]
- Shi, T.; Yang, S.Y.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean Prod. 2020, 244, 11. [Google Scholar] [CrossRef]
- Cramer, R.D. Partial Least Squares (PLS): Its strengths and limitations. Perspect. Drug Discov. Des. 1993, 1, 269–278. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [Google Scholar]
- Lu, X. Responses of Eco-Hydrological Process to Changing Environment in Yanwachuan Basin Based on Green Water Theory. Ph.D. Thesis, Xi’an University of Technology, Shaanxi, China, 2019. [Google Scholar]
- Luan, Z.-Q.; Deng, W. Study on Hydrological Effects of Human Activities in Sanjiang Plain (in Chinese). Bull. Soil Water Conserv. 2003, 23, 11–14. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.C.; Gao, H.R.; Nie, N. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens. 2018, 10, 356. [Google Scholar] [CrossRef] [Green Version]
Parameter | Product | Sensor | Spatial Resolution | Temporal Resolution | Data processing | Reference |
---|---|---|---|---|---|---|
LAI | GLASS | AVHRR | about 5 km | 8-day | (1) Use MVC technique to produce monthly data based on 8-day products (2) Average monthly data to obtain annual data | [19,58] |
FVC | GLASS | AVHRR | about 5 km | 8-day | (1) Use MVC technique to produce monthly data based on 8-day products (2) Average monthly data to obtain annual data | [59] |
GPP | GLASS | AVHRR | about 5 km | 8-day | Summing 8-day products to obtain annual data | [60] |
Data Type | Description | Source | Download Site |
---|---|---|---|
Climate | Daily temperature and precipitation data from 1982 to 2013 in 193 meteorological stations | China Meteorological Data Network (CMA) and National Oceanic and Atmospheric Administration (NOAA)’s National Centers for Environmental Information (NCEI) | https://data.cma.cn/en https://www.ncdc.noaa.gov/cdo-web/ |
Land-use | Chinese land-use map (1980, 1995, 2005, and 2010) and global land-use map (1992–1993, 2000, 2005, and 2010) at spatial resolution of 1 km | Chinese land-use maps from Resource and Environment Data Cloud Platform; Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type product from U.S. Geological Survey (USGS); Global Land Cover Characterization (GLCC) from USGS; and Global Land Cover 2000 database (GLC2000) from Joint Research Centre, European Commission | http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3 https://lpdaac.usgs.gov/products/mcd12q1v006/ https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc http://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php |
Hydrology | Surface runoff (SURQ), lateral flow (LATQ), snowmelt (SM), soil water (SW), ground-water flow (GWQ), and evapotranspiration (ET) | Simulated by the soil and water assessment tool (SWAT) model | authors’ previous study [61] |
Independent Variable | Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|---|
Climate changes | Precipitation (Pcp, mm) | 565.977 | 100.521 | 289.969 | 800.870 |
Mean temperature (Tavg, °C) | 0.046 | 2.931 | −6.253 | 6.051 | |
Maximum temperature (Tmax, °C) | 6.489 | 2.499 | 0.310 | 12.159 | |
Minimum temperature (Tmin, °C) | −6.263 | 3.394 | −12.900 | 0.627 | |
Anthropogenic activities | Proportion of forest area (Forest) | 0.460 | 0.324 | 0.000 | 0.997 |
Proportion of pasture area (Pasture) | 0.181 | 0.234 | 0.000 | 0.988 | |
Proportion of wetland area (Wetland) | 0.049 | 0.081 | 0.000 | 0.542 | |
Proportion of crop area (Crop) | 0.253 | 0.231 | 0.000 | 0.887 | |
Proportion of residential area (Residential) | 0.014 | 0.035 | 0.000 | 0.500 | |
Proportion of water area (Water) | 0.032 | 0.101 | 0.000 | 1.000 | |
Proportion of range area (Range) | 0.011 | 0.065 | 0.000 | 1.000 | |
Hydrological processes | Surface runoff (SURQ, mm) | 8.941 | 6.423 | 0.000 | 31.384 |
Groundwater flow (GWQ, mm) | 2.532 | 3.332 | 0.000 | 32.949 | |
Lateral flow (LATQ, mm) | 0.087 | 0.154 | 0.000 | 1.288 | |
Actual evapotranspiration (ET, mm) | 33.769 | 7.152 | 14.279 | 76.573 | |
Amount of water stored in the soil profile (SW, mm) | 59.386 | 27.181 | 0.000 | 136.027 | |
Snowmelt (SM, mm) | 5.052 | 3.034 | 0.000 | 20.291 |
Latent Factors (LF) | Y Variance | R2 | Adjusted R2 |
---|---|---|---|
1 | 0.665 | 0.665 | 0.665 |
2 | 0.097 | 0.762 | 0.761 |
3 | 0.062 | 0.825 | 0.824 |
4 | 0.008 | 0.833 | 0.832 |
5 | 0.004 | 0.837 | 0.835 |
Independent Variable | Beta Coefficient | VIP | |||||||
---|---|---|---|---|---|---|---|---|---|
LAI | FVC | GPP | Model | LF 1 | LF 2 | LF 3 | LF 4 | LF 5 | |
Pcp | 0.0011 | 0.0002 | 0.4972 | 1.5346 | 1.6776 | 1.6435 | 1.5819 | 1.5751 | 1.5715 |
Tavg | 0.0048 | −0.0006 | 4.6085 | 0.7952 | 0.6384 | 0.7849 | 0.7568 | 0.7552 | 0.7535 |
Tmax | 0.0078 | −0.0009 | 6.4948 | 0.8564 | 0.7404 | 0.8523 | 0.8283 | 0.8274 | 0.8263 |
Tmin | 0.0020 | −0.0006 | 2.8969 | 0.7935 | 0.6432 | 0.7820 | 0.7528 | 0.7496 | 0.7481 |
Forest | 0.6001 | 0.1132 | 237.3714 | 1.6577 | 1.7452 | 1.6676 | 1.7356 | 1.7357 | 1.7317 |
Pasture | −0.6216 | −0.1269 | −270.6097 | 1.4005 | 1.4170 | 1.5180 | 1.5098 | 1.5025 | 1.5008 |
Wetland | −0.6399 | −0.0686 | −272.2829 | 0.5943 | 0.5958 | 0.5673 | 0.5588 | 0.5665 | 0.5786 |
Crop | −0.2707 | −0.0376 | −84.2908 | 0.6461 | 0.4925 | 0.5442 | 0.5552 | 0.5981 | 0.6009 |
Residential | −0.9260 | −0.2014 | −384.5357 | 0.4913 | 0.4026 | 0.3803 | 0.4589 | 0.4680 | 0.4679 |
Water | −0.6076 | −0.1382 | −221.1102 | 0.5024 | 0.3042 | 0.2963 | 0.5232 | 0.5220 | 0.5233 |
Range | −0.6574 | −0.1851 | −237.5839 | 0.4536 | 0.4024 | 0.3998 | 0.4715 | 0.4755 | 0.4807 |
SURQ | −0.0052 | −0.0001 | −2.0949 | 1.2230 | 1.2454 | 1.1747 | 1.2252 | 1.2290 | 1.2262 |
GWQ | 0.0020 | 0.0006 | 0.7943 | 0.8109 | 0.7918 | 0.7407 | 0.7975 | 0.7985 | 0.7967 |
LATQ | 0.0825 | 0.0617 | −32.9155 | 0.8351 | 0.8570 | 0.8210 | 0.8140 | 0.8138 | 0.8234 |
ET | 0.0071 | 0.0008 | 4.4259 | 0.7231 | 0.4901 | 0.7509 | 0.7228 | 0.7193 | 0.7207 |
SW | 0.0018 | 0.0003 | 1.1370 | 1.2293 | 1.3418 | 1.2865 | 1.2371 | 1.2401 | 1.2440 |
Snowmelt | −0.0006 | 0.0018 | −0.8766 | 1.2590 | 1.3398 | 1.2543 | 1.2591 | 1.2552 | 1.2529 |
Variable | LAI | FVC | GPP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLS | TWR | GWR | GWTR | OLS | TWR | GWR | GWTR | OLS | TWR | GWR | GWTR | |
AICc | −215.4 | −279.2 | −745.9 | −851.6 | −1955.4 | −2096.1 | −2328.2 | −2436.6 | 6442.5 | 6382.5 | 5665.5 | 5564.1 |
R2 | 0.838 | 0.866 | 0.955 | 0.970 | 0.871 | 0.908 | 0.952 | 0.970 | 0.781 | 0.818 | 0.962 | 0.975 |
Adjusted R2 | 0.836 | 0.864 | 0.955 | 0.970 | 0.870 | 0.907 | 0.952 | 0.970 | 0.778 | 0.816 | 0.961 | 0.974 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhang, W.; Wang, S.; Zhang, B.; Xu, Q. Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin. Remote Sens. 2021, 13, 684. https://doi.org/10.3390/rs13040684
Zhou S, Zhang W, Wang S, Zhang B, Xu Q. Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin. Remote Sensing. 2021; 13(4):684. https://doi.org/10.3390/rs13040684
Chicago/Turabian StyleZhou, Shilun, Wanchang Zhang, Shuhang Wang, Bo Zhang, and Qiang Xu. 2021. "Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin" Remote Sensing 13, no. 4: 684. https://doi.org/10.3390/rs13040684
APA StyleZhou, S., Zhang, W., Wang, S., Zhang, B., & Xu, Q. (2021). Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin. Remote Sensing, 13(4), 684. https://doi.org/10.3390/rs13040684