Phaseless Terahertz Coded-Aperture Imaging Based on Deep Generative Neural Network
Abstract
:1. Introduction
2. System Configuration and Imaging Model
2.1. Proposed PL-TCAI Architecture
2.2. Imaging Model
3. Target Reconstruction Principle and Imaging Algorithm
3.1. Target Reconstruction Principle
3.2. Imaging Algorithm
Algorithm 1: Deep Gradient Descent (Deep-GD) |
Input: |
Sb: echo signal intensities vector |
S: reference signal martix |
T: maximum iteration |
G: generate network |
Iteration via a gradient descent scheme: |
1: Initialize |
2: for t = 0 to T do |
3: Compute ; |
4: ; |
5: ; |
6: end for |
7: |
Output: |
the estimated target-scattering coefficient vector |
4. Numerical Tests
4.1. Results of Random Target on Fully-Connected Generator
4.2. Results of Sparse Targets and Extended Targets on DCGAN
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PL-TCAI | Phaseless terahertz coded-aperture imaging |
TCAI | Terahertz coded-aperture imaging |
WF | Wirtinger Flow |
TWF | Truncated Wirtinger Flow |
WFOS | Wirtinger Flow with optimal stepsize |
SWFOS | Sparse Wirtinger Flow alogithms with optimal stepsize |
DCGAN | Deep convolutional generative adversarial networ |
LFM | Linear frequency modulation |
Deep-GD | Deep gradient descent |
SSIM | structural similarity |
TCAI-MNIST | Terahertz coded-aperture imaging MNIST |
TCAI-FMNIST | Terahertz coded-aperture imaging Fashion-MNIST |
References
- Llull, P.; Liao, X.; Yuan, X.; Yang, J.; Kittle, D.; Carin, L.; Sapiro, G.; Brady, D.J. Coded aperture compressive temporal imaging. Opt. Express 2013, 21, 10526–10545. [Google Scholar] [CrossRef] [Green Version]
- Galvis, L.; Arguello, H.; Arce, G.R. Coded aperture design in mismatched compressive spectral imaging. Appl. Opt. 2015, 54, 9875. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Zhou, X.L.; Xu, X.; Qin, Y.L.; Wang, H.Q. Radar Coincidence Imaging with Stochastic Frequency Modulated Array. IEEE J. Sel. Top. Signal Process. 2016, 11, 414–427. [Google Scholar] [CrossRef]
- Li, D.Z.; Li, X.; Qin, Y.L.; Cheng, Y.Q.; Wang, H.Q. Radar Coincidence Imaging: An Instantaneous Imaging Technique with Stochastic Signals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2261–2277. [Google Scholar]
- Zhou, X.; Wang, H.; Cheng, Y.; Qin, Y.; Chen, H. Radar Coincidence Imaging for Off-Grid Target Using Frequency-Hopping Waveforms. Int. J. Antennas Propag. 2016. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Lu, Y.; Xia, T.; Lai, W.; Yang, J.; Lu, H.; Deng, G. Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. RSC Adv. 2018, 8, 4197–4203. [Google Scholar] [CrossRef] [Green Version]
- Perez-Palomino, G.; Barba, M.; Encinar, J.A.; Cahill, R.; Dickie, R.; Baine, P.; Bain, M. Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals. IEEE Trans. Antennas Propag. 2015, 63, 3722–3727. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.; Driscoll, T.; Mrozack, A.; Lipworth, G.; Reynolds, M.; Brady, D.; Smith, D.R. Metamaterial apertures for computational imaging. Science 2013, 339, 310–313. [Google Scholar] [CrossRef]
- Chen, S.; Luo, C.G.; Deng, B.; Qin, Y.L.; Wang, H.Q. Study on coding strategies for radar coded-aperture imaging in terahertz band. J. Electron. Imaging 2017, 26, 1. [Google Scholar] [CrossRef]
- Ullmann, I.; Adametz, J.; Oppelt, D.; Vossiek, M. Millimeter wave radar imaging for non-destructive detection of material defects. Proc. Sens. 2017, 2017, 467–472. [Google Scholar]
- Semenov, A.; Richter, H.; Böttger, U.; Hübers, H.W. Imaging terahertz radar for security applications. In Proceedings of the International Conference on Antennas, Radar and Wave Propagation, Baltimore, MD, USA, 16–18 April 2008. [Google Scholar]
- Luo, C.G.; Deng, B.; Wang, H.Q.; Qin, Y.L. High-resolution terahertz coded-aperture imaging for near-field three-dimensional target. Appl. Opt. 2019, 58, 3293–3300. [Google Scholar] [CrossRef]
- Chen, S.; Luo, C.G.; Wang, H.Q.; Deng, B.; Cheng, Y.Q.; Zhuang, Z. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Matched Filtering and Convolutional Neural Network. Sensors 2018, 18, 1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Luo, C.; Gan, F.; Wang, H.; Wang, Y. Antenna Phase Error Compensation for Terahertz Coded-Aperture Imaging. Electronics 2020, 9, 628. [Google Scholar] [CrossRef]
- Rogalski, A. Terahertz detectors and focal plane arrays. Elektronika 2010, 51, 93–108. [Google Scholar]
- Kawamura, J.; Tong, C.Y.E.; Blundell, R.; Papa, D.C.; Hunter, T.R.; Patt, F.; Gol’Tsman, G.; Gershenzon, E. Terahertz-frequency waveguide NbN hot-electron bolometer mixer. IEEE Trans. Appl. Supercond. 2001, 11, 952–954. [Google Scholar] [CrossRef]
- Yurduseven, O.; Fromenteze, T.; Smith, D.R. Relaxation of Alignment Errors and Phase Calibration in Computational Frequency-Diverse Imaging using Phase Retrieval. IEEE Access 2018, 6, 14884–14894. [Google Scholar] [CrossRef]
- Peng, L.; Luo, C.G.; Deng, B.; Wang, H.Q.; Qin, Y.L.; Chen, S. Phaseless Terahertz Coded-Aperture Imaging Based on Incoherent Detection. Sensors 2019, 19, 226. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Luo, C.G.; Deng, B.; Wang, H.Q.; Chen, S.; Dong, J. Phaseless Terahertz Coded-Aperture Imaging for Sparse Target Based on Phase Retrieval Algorithm. Sensors 2019, 19, 4617. [Google Scholar] [CrossRef] [Green Version]
- Gerchberg, R.W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–250. [Google Scholar]
- Candes, E.J.; Li, X.; Soltanolkotabi, M. Phase Retrieval via Wirtinger Flow: Theory and Algorithms. IEEE Trans. Inf. Theory 2015, 61, 1985–2007. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Candes, E.J. Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems. Commun. Pure Appl. Math. 2015, 70, 5. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.Y.; Wang, H.X. Multiple Scattering Media Imaging via End-to-End Neural Network. arXiv 2018, arXiv:1806.09968. [Google Scholar]
- Rivenson, Y.; Zhang, Y.; Gunaydin, H.; Teng, D.; Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 2017, 7, 17141. [Google Scholar] [CrossRef]
- Hyder, R.; Shah, V.; Hegde, C.; Asif, M.S. Alternating Phase Projected Gradient Descent with Generative Priors for Solving Compressive Phase Retrieval. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar]
- YPaul, H.; Oscar, L.; Vladislav, V. Phase retrieval under a generative prior. In Proceedings of the Neural Information Processing Systems (NeurIPS), Montréal, QC, Canada, 3 December 2018. [Google Scholar]
- Shamshad, F.; Ahmed, A. Robust Compressive Phase Retrieval via Deep Generative Priors. arXiv 2018, arXiv:1808.05854. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2016, arXiv:1511.06434. [Google Scholar]
- Arora, S.; Liang, Y.; Ma, T. Why are deep nets reversible: A simple theory, with implications for training. arXiv 2015, arXiv:1511.05653. [Google Scholar]
- Lipton, Z.C.; Tripathi, S. Precise Recovery of Latent Vectors from Generative Adversarial Networks. arXiv 2017, arXiv:1702.04782. [Google Scholar]
- Hoyer, P.O. Nonnegative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469. [Google Scholar]
- Lecun, Y.; Bottou, L. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Bau, D.; Zhu, J.Y.; Wulff, J.; Peebles, W.; Strobelt, H.; Zhou, B.; Torralba, A. Seeing What a GAN Cannot Generate. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
Parameters | Values |
---|---|
Center frequency | 340 GHz |
Bandwidth | 20 GHz |
Imaging distance | 1 m |
Size of coded aperture | 0.12 m × 0.12 m |
Size of imaging plane | 0.448 m × 0.448 m |
Maximum number of samples | 5 × 64 × 64 |
Number of coded aperture elements | 60 × 60 |
Number of grid cells in the imaging plane |
The Dimension of Latent Vector | |||
---|---|---|---|
0.5978 (±0.3596) | 8.1798 (±2.6483 ) | 7.6043 (±2.8289 ) | |
0.9889 (±0.3364) | 1.0889 (±2.2585 ) | 8.4532 (±1.6417 ) | |
1.1263 (±0.3502) | 1.7977 (±6.2150 ) | 1.6902 (±3.9435 ) | |
1.6372 (±0.4832) | 2.2362 (±5.8330 ) | 1.7123 (±4.8495 ) | |
2.3143 (±0.6877) | 2.6222 (±8.2570 ) | 1.9877 (±3.8601 ) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, F.; Yuan, Z.; Luo, C.; Wang, H. Phaseless Terahertz Coded-Aperture Imaging Based on Deep Generative Neural Network. Remote Sens. 2021, 13, 671. https://doi.org/10.3390/rs13040671
Gan F, Yuan Z, Luo C, Wang H. Phaseless Terahertz Coded-Aperture Imaging Based on Deep Generative Neural Network. Remote Sensing. 2021; 13(4):671. https://doi.org/10.3390/rs13040671
Chicago/Turabian StyleGan, Fengjiao, Ziyang Yuan, Chenggao Luo, and Hongqiang Wang. 2021. "Phaseless Terahertz Coded-Aperture Imaging Based on Deep Generative Neural Network" Remote Sensing 13, no. 4: 671. https://doi.org/10.3390/rs13040671
APA StyleGan, F., Yuan, Z., Luo, C., & Wang, H. (2021). Phaseless Terahertz Coded-Aperture Imaging Based on Deep Generative Neural Network. Remote Sensing, 13(4), 671. https://doi.org/10.3390/rs13040671