A Classification Scheme for Sediments and Habitats on Exposed Intertidal Flats with Multi-Frequency Polarimetric SAR
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. SAR Data
3.2. FCDK-RF Classification Scheme
3.2.1. FCD Feature Set
3.2.2. Developed FCDK Feature Set
3.2.3. FCDK-RF Classification Scheme
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieuwhof, S.; Herman, P.; Dankers, N.; Troost, K.; van der Wal, D. Remote sensing of epibenthic shellfish using Synthetic Aperture Radar satellite imagery. Remote Sens. 2015, 7, 3710–3734. [Google Scholar] [CrossRef] [Green Version]
- Gade, M. A polarimetric radar view at exposed intertidal flats. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Gade, M.; Melchionna, S.; Stelzer, K.; Kohlus, J. Multi-frequency SAR data help improving the monitoring of intertidal flats on the German North Sea coast. Estuar. Coast. Shelf Sci. 2014, 140, 32–42. [Google Scholar] [CrossRef]
- Adolph, W.; Farke, H.; Lehner, S.; Ehlers, M. Remote sensing intertidal flats with TerraSAR-X. A SAR perspective of the structural elements of a tidal basin for monitoring the Wadden Sea. Remote Sens. 2018, 10, 1085. [Google Scholar] [CrossRef] [Green Version]
- Gade, M.; Wang, W.; Kemme, L. On the imaging of exposed intertidal flats by single- and dual-co-polarization Synthetic Aperture Radar. Remote Sens. Environ. 2018, 205, 315–328. [Google Scholar] [CrossRef]
- Müller, G.; Stelzer, K.; Smollich, S.; Gade, M.; Adolph, W.; Melchionna, S.; Kemme, L.; Geißler, J.; Millat, G.; Reimers, H.C. Remotely sensing the German Wadden Sea—A new approach to address national and international environmental legislation. Environ. Monit. Assess. 2016, 188, 595. [Google Scholar] [CrossRef] [PubMed]
- Gade, M.; Melchionna, S. Joint use of multiple Synthetic Aperture Radar imagery for the detection of bivalve beds and morphological changes on intertidal flats. Estuar. Coast. Shelf Sci. 2016, 171, 1–10. [Google Scholar] [CrossRef]
- Gade, M.; Melchionna, S.; Kemme, L. Analyses of multi-year Synthetic Aperture Radar imagery of dry-fallen intertidal flats. In Proceedings of the 36th International Symposium of Remote Sensing and Environment, Berlin, Germany, 11–15 May 2015. [Google Scholar]
- Wang, W.; Yang, X.; Li, X.; Chen, K.; Liu, G.; Li, Z.; Gade, M. A fully polarimetric SAR imagery classification scheme for mud and sand flats in intertidal zones. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1734–1742. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, X.; Liu, Z.; Gao, W.; Hu, Z.; Wu, G. Mapping tidal flats with Landsat 8 images and google earth engine: A case study of the China’s eastern coastal zone circa 2015. Remote Sens. 2019, 11, 924. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Moon, W.M.; Kim, D.J. Estimation of surface roughness parameter in intertidal mudflat using airborne polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1022–1031. [Google Scholar] [CrossRef]
- Omari, K.; Chenier, R.; Touzi, R.; Sagram, M. Investigation of C-band SAR polarimetry for mapping a high-tidal coastal environment in northern Canada. Remote Sens. 2020, 12, 1941. [Google Scholar] [CrossRef]
- Gade, M.; Alpers, W.; Melsheimer, C.; Tanck, G. Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data. Remote Sens. Environ. 2008, 112, 1603–1613. [Google Scholar] [CrossRef]
- Geng, X.; Li, X.; Velotto, D.; Chen, K. Study of the polarimetric characteristics of mud flats in an intertidal zone using C-and X-band spaceborne SAR data. Remote Sens. Environ. 2016, 176, 56–68. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Wang, J. Classification of coastal wetlands in eastern China using polarimetric SAR data. Arab. J. Geosci. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Assessing Radarsat-2 for mapping shoreline cleanup and assessment technique (SCAT) classes in the Canadian Arctic. Can. J. Remote Sens. 2014, 40, 243–267. [Google Scholar] [CrossRef]
- Choe, B.H.; Kim, D.J.; Hwang, J.H.; Oh, Y.; Moon, W.M. Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data. Estuar. Coast. Shelf Sci. 2012, 97, 28–37. [Google Scholar] [CrossRef]
- Cheng, T.Y.; Yamaguchi, Y.; Chen, K.; Lee, J.S. Sandbank and oyster farm monitoring with multi-temporal polarimetric SAR data using four-component scattering power decomposition. IEICE Trans. Commun. 2013, 96, 2573–2579. [Google Scholar] [CrossRef]
- Wang, W.; Gade, M.; Yang, X. Detection of bivalve beds on exposed intertidal flats using polarimetric SAR indicators. Remote Sens. 2017, 9, 1047. [Google Scholar] [CrossRef] [Green Version]
- Regniers, O.; Bombrun, L.; Ilea, I.; Lafon, V.; Germain, C. Classification of oyster habitats by combining wavelet-based texture features and polarimetric SAR descriptors. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 12–17 November 2015. [Google Scholar]
- Nehls, G.; Büttger, H. Miesmuschelmonitoring 1998–2005 im Nationalpark Schleswig-Holstenisches Wattenmeer. Ein Projekt im Rahmen des Trilateral Monitoring and Assessment Program (TMAP); Internal Report; National Park Authority of the Schleswig-Holstein Wadden Sea: Tönning, Germany, 2006. [Google Scholar]
- Büttger, H.; Nehls, G.; Stoddard, P. The history of intertidal blue mussel beds in the North Frisian Wadden Sea in the 20th century: Can we define reference conditions for conservation targets by analysing aerial photographs? J. Sea Res. 2014, 87, 91–102. [Google Scholar] [CrossRef]
- Schmitt, A.; Brisco, B. Wetland monitoring using the curvelet-based change detection method on polarimetric SAR imagery. Water 2013, 5, 1036–1051. [Google Scholar] [CrossRef]
- Schmitt, A.; Wendleder, A.; Hinz, S. The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J. Photogramm. Remote Sens. 2015, 102, 122–139. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Wendleder, A.; Murnaghan, K.; Brisco, B.; Poncos, V. Multi-sensor wetland mapping over the Peace Athabasca Delta. In Proceedings of the European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Allain, S.; Ferro-Famil, L.; Pottier, E. Two novel surface model based inversion algorithms using multi-frequency PolSAR data. In Proceedings of the IEEE Geoscience and Remote Sensing, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
Date/Time | Sensor/Band | Polarization/ Inc. Angle | Wind Speed/Direction | Water Level | Time/Water Level at Low Tide |
---|---|---|---|---|---|
24 December 2015/05:43 UTC | RS2/C | Q/36.3° | 9.2 m/s/180° | −94 cm | 05:25 UTC/−103 cm |
29 February 2016/23:10 UTC | AL2/L | Q/35.3° | 2.2 m/s/110° | −171 cm | 23:46 UTC/−176 cm |
20 June 2016/05:50 UTC | TSX/X | D/31.4° | 6.4 m/s/230° | −160 cm | 06:22/UTC/−171 cm |
AL2 (L-Band) | RS2 (C-Band) | TSX (X-Band) | ||||
---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
Sandy sediments | 86.7 | 85.6 | 89.1 | 86.2 | 81.7 | 79.8 |
Mixed sediments | 86.8 | 87.2 | 88.0 | 86.7 | 81.0 | 80.9 |
Open water | 86.5 | 88.5 | 88.9 | 87.6 | 86.2 | 87.0 |
Bivalve beds | 89.0 | 91.8 | 90.9 | 91.3 | 91.6 | 92.7 |
OA (%) | 86.2 | 88.7 | 85.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Gade, M.; Stelzer, K.; Kohlus, J.; Zhao, X.; Fu, K. A Classification Scheme for Sediments and Habitats on Exposed Intertidal Flats with Multi-Frequency Polarimetric SAR. Remote Sens. 2021, 13, 360. https://doi.org/10.3390/rs13030360
Wang W, Gade M, Stelzer K, Kohlus J, Zhao X, Fu K. A Classification Scheme for Sediments and Habitats on Exposed Intertidal Flats with Multi-Frequency Polarimetric SAR. Remote Sensing. 2021; 13(3):360. https://doi.org/10.3390/rs13030360
Chicago/Turabian StyleWang, Wensheng, Martin Gade, Kerstin Stelzer, Jörn Kohlus, Xinyu Zhao, and Kun Fu. 2021. "A Classification Scheme for Sediments and Habitats on Exposed Intertidal Flats with Multi-Frequency Polarimetric SAR" Remote Sensing 13, no. 3: 360. https://doi.org/10.3390/rs13030360