Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Burn Severity Index
2.4. Revised Universal Soil Loss Equation (RUSLE)
3. Results
3.1. Burn Severity Index Quantification
3.2. Seasonal Spatial Variations of Soil Loss
3.3. Validation of the Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luleva, M.I.; Van Der Werff, H.; Van Der Meer, F.; Jetten, V. Gaps and opportunities in the use of remote sensing for soil erosion assessment. Chemistry 2012, 21, 748–764. [Google Scholar]
- Montanarella, L.; Vargas, R. Global governance of soil resources as a necessary condition for sustainable development. Curr. Opin. Environ. Sustain. 2012, 4, 559–564. [Google Scholar]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar]
- Yang, X.; Zhu, Q.; Tulau, M.; McInnes-Clarke, S.; Sun, L.; Zhang, X. Near real-time monitoring of post-fire erosion after storm events: A case study in Warrumbungle National Park, Australia. Int. J. Wildland Fire 2018, 27, 413–424. [Google Scholar]
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Soil physical properties. In Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; Neary, D.G., Ryan, K.C., DeBano, L.F., Eds.; General Technical Report (GTR); Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; Volume 4, pp. 29–52. [Google Scholar]
- Yang, T.; Tedersoo, L.; Lin, X.; Fitzpatrick, M.C.; Jia, Y.; Liu, X.; Ni, Y.; Shi, Y.; Lu, P.; Zhu, J.; et al. Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. New Phytol. 2020, 227, 572–587. [Google Scholar]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar]
- Gitas, I.Z.; De Santis, A.; Mitri, G.H. Remote sensing of burn severity. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 129–148. [Google Scholar]
- Sepuru, T.K.; Dube, T. An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sens. Appl. Soc. Environ. 2018, 9, 1–9. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses: A guide to conservation planning. In Agriculture Handbook; No. 537; US Department of Agriculture Science and Education Administration: Washington, DC, USA, 1978; pp. 1–69. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.; Yoder, D. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (rusle). In Agriculture Handbook; US Department of Agriculture: Washington, DC, USA, 1997; Volume 703, pp. 1–251. [Google Scholar]
- Alexandridis, T.K.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The effects of seasonality in estimating the c-factor of soil erosion studies. Land Degrad. Dev. 2013, 26, 596–603. [Google Scholar]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (revised) universal soil loss equation (IUSLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar]
- Grauso, S.; Pasanisi, F.; Tebano, C. Assessment of a simplified connectivity index and specific sediment potential in river basins by means of geomorphometric tools. Geosciences 2018, 8, 48. [Google Scholar]
- Di Piazza, G.V.; Di Stefano, C.; Ferro, V. Modelling the effects of a bushfire on erosion in a Mediterranean basin/Modélisation des impacts d’un incendie sur l’érosion dans un bassin Méditerranéen. Hydrol. Sci. J. 2007, 52, 1253–1270. [Google Scholar]
- Fernandez, C.; Vega, J.A.; Vieira, D.C.S. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan–Morgan–Finney models. Land Degrad. Dev. 2010, 21, 58–67. [Google Scholar]
- Rulli, M.C.; Offeddu, L.; Santini, M. Modeling post-fire water erosion mitigation strategies. Hydrol. Earth Syst. Sci. 2013, 17, 2323–2337. [Google Scholar]
- Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. CATENA 2020, 187, 1–16. [Google Scholar]
- Rondogianni, T. Etude Neotectonique des Rivages Occidentaux du Canal d’ Atalanti (Grece Centrale). Ph.D. Thesis, Universite de Paris Sud, Orsay, France, 1984. [Google Scholar]
- Meteo Search. Climate Data Provided by the National Observatory of Athens. Available online: https://meteosearch.meteo.gr/ (accessed on 30 July 2021).
- Hellenic Military Geographical Service (HMGS). Topographic Maps. Available online: https://www.gys.gr/hmgs-cartographicen.html (accessed on 30 July 2021).
- Hellenic Cadastre. Geospatial Data INSPIRE Geoportal of the “Hellenic Cadastre”. Available online: https://www.ktimanet.gr/geoportal/catalog/main/home.page (accessed on 6 August 2021).
- CORINE Land Cover. Provided by Copernicus. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 12 August 2021).
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar]
- United States Geological Survey (USGS). EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 25 August 2021).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 29 August 2021).
- European Soil Data Centre (ESDAC). Soil Erodibility in Europe. Available online: https://esdac.jrc.ec.europa.eu/themes/soil-erodibility-europe (accessed on 11 December 2021).
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensory satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [Google Scholar]
- Lopez-Garcia, M.J.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar]
- Key, C.H.; Benson, N. Measuring and remote sensing of burn severity: The CBI and NBR. In Proceedings of the Joint Fire Science Conference and Workshop, Boise, ID, USA, 15–17 June 1999. [Google Scholar]
- Key, C.H.; Benson, N. Landscape assessment: Ground measure of severity, the composite burn index and remote sensing of severity, the normalized burn ratio. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006; pp. 1–51. [Google Scholar]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sens. Environ. 2010, 114, 2548–2563. [Google Scholar]
- Howard, S.M.; Lacasse, J.M. An evaluation of gap-filled Landsat SLC-Off imager for wildland fire burn severity mapping. Photogramm. Eng. Remote Sens. 2004, 70, 877–880. [Google Scholar]
- Barnes, J.; Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463–475. [Google Scholar]
- FIREMON: Fire Effects Monitoring and Inventory Protocol. Available online: https://www.frames.gov/firemon/home (accessed on 7 September 2021).
- Ghosal, K.; Das, S. A review of RUSLE model. J. Indian Soc. Remote. Sens. 2020, 48, 689–707. [Google Scholar]
- Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete Island (Greece) by incorporating the dynamic “nature” of R and C-factors in RUSLE modeling. Remote Sens. 2020, 12, 2439. [Google Scholar]
- Tian, P.; Zhu, Z.; Yue, Q.; He, Y.; Zhang, Z.; Hao, F.; Guo, W.; Chen, L.; Liu, M. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. Int. Soil Water Conserv. Res. 2021, 9, 433–444. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; No. 282; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1965; p. 47.
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar]
- Yoder, D.C.; Lown, J.B. The future of RUSLE: Inside the new revised universal soil loss equation. J. Soil Water Conserv. 1995, 50, 484–489. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Vachaviolos, T.K. Estimation of the Soil Erosion, the Sediment Yield and the Reservoir Deposition Using Empirical Methods. Master’s Thesis, National Technical University of Athens, Athens, Greece, 2014. [Google Scholar]
- Tamiru, H.; Wagari, M. RUSLE model based annual soil loss quantification for soil erosion protection in fincha catchment, abay river basin, Ethiopia. Air Soil Water Res. 2021, 14, 1–12. [Google Scholar]
- Whang, H.; Zhao, H. Dynamic changes of soil erosion in the taohe river basin using the RUSLE model and google earth engine. Water 2020, 12, 1293. [Google Scholar]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, M.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar]
- Loureiro, N.; Coutinho, M.A. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve Region, Portugal. J. Hydrol. 2001, 250, 12–18. [Google Scholar]
- Lanorte, A.; Cillis, G.; Calamita, G.; Nolè, G.; Pilogallo, A.; Tucci, B.; De Santis, F. Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomat. Nat. Hazards Risk 2019, 10, 1563–1595. [Google Scholar]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.G. Soil erosion assessment in southern Evia Island using USLE and GIS. Bull. Geol. Soc. Greece 2010, 43, 1572–1581. [Google Scholar]
- Aiello, A.; Adamo, M.; Canora, F. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. CATENA 2015, 131, 174–185. [Google Scholar]
- Moore, I.D.; Burch, G.J. Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing Ltd.: Oxford, UK, 2005; p. 314. [Google Scholar]
- Kinnell, P.I.A. Event soil loss, runoff and the universal soil loss equation family of models: A Review. J. Hydrol. 2010, 385, 384–397. [Google Scholar]
- Pham, T.G.; Degener, J.; Kappas, M. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in a sap basin: Central Vietna. Int. Soil Water Conserv. Res. 2018, 6, 99–110. [Google Scholar]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar]
- Shin, G.J. The Analysis of Soil Erosion Analysis in the Watershed Using GIS. Ph.D. Thesis, Gang-won National University, Chuncheon, Korea, 1999. [Google Scholar]
- Vidali, M. Estimation of Soil Erosion Model in the Reservoir of the Pinios Dam of Ilia Prefecture. Master’s Thesis, University of Patras, Patras, Greece, 2013. [Google Scholar]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar]
- David, W.P. Soil and water conservation planning: Policy issues and recommendations. Philipp. J. Dev. 1988, 15, 47–84. [Google Scholar]
- Petropoulos, G.P.; Kontoes, C.; Keramitsoglou, I. Burnt area delineation from a unitemporal perspective based on Landsat TM imagery classification using Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 70–80. [Google Scholar]
- Athanasakis, G.; Psomiadis, E.; Chatziantoniou, A. High-resolution earth observation data and spatial analysis for burn severity evaluation and post-fire effects assessment in the Island of Chios, Greece. In Earth Resources and Environmental Remote Sensing/GIS Applications VIII; International Society for Optics and Photonics: Washington, DC, USA, 2017; p. 104281. [Google Scholar]
- Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; Prats, S.A.; Neves, R.; Keizer, J.J. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environ. Res. 2018, 165, 365–378. [Google Scholar]
- Cerda, R.; Allinne, C.; Gary, C.; Tixier, P.; Harvey, C.A.; Krolczyk, L.; Mathiot, C.; Clement, E.; Aubertot, J.-N.; Avelino, J. Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur. J. Agron. 2017, 82, 308–319. [Google Scholar]
- Farhan, Y.; Nawaiseh, S. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ. Earth Sci. 2015, 74, 4649–4669. [Google Scholar]
- Bocchiola, D.; Rulli, M.C.; Rosso, R. A flume experiment on the formation of wood jams in rivers. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Chalise, D.; Kumar, L.; Kristiansen, P. Land degradation by soil erosion in Nepal: A review. Soil Syst. 2019, 3, 12. [Google Scholar]
- Cerda, A.; Rodrigo-Comino, J. Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrol. Hydrobiol. 2020, 20, 59–72. [Google Scholar]
- Andreu, V.; Imeson, A.C.; Rubio, J.L. Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. CATENA 2001, 44, 69–84. [Google Scholar]
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. CATENA 2007, 71, 68–75. [Google Scholar]
- Lopez-Vicente, M.; Cerda, A.; Kramer, H.; Keestra, S. Post-fire practices benefits on vegetation recovery and soil conservation in a Mediterranean area. Land Use Policy 2021, 111, 105776. [Google Scholar]
Factors | Data Sets | Data Source | Spatial Scale | Temporal Scale | Primary Format |
---|---|---|---|---|---|
Rainfall erosivity (R) | Rainfall measurements by stations | National Observatory of Athens (NOA) | - | Daily, 2012–2020 | Vector (points) |
Cover management (C) | Sentinel-2 and Landsat-8 images | Copernicus, USGS | 10 m (Sentinel-2A) 30 m (Landsat 8) | 2012–2013, 2014–2015, 2019–2020 | Raster (grid) |
Soil erodibility (K) | Soil types | “European Soil Database-Soil Erodibility (K-Factor) High Resolution dataset for Europe” (ESDAC/JRC) | 500 m | 2014 | Vector (polygons) |
Slope length and steepness (LS) | DEM | Hellenic Cadastre | 5 m | - | Raster (grid) |
Support practice (P) | Land cover | Corine | 100 m | 2012, 2018 | Vector (polygons) |
Burn Severity | dNBR |
---|---|
Unburned | −0.1 to +0.09 |
Low Severity | 0.1 to 0.26 |
Moderate-Low Severity | 0.27 to 0.43 |
Moderate-High Severity | 0.44 to 0.65 |
High Severity | ≥0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tselka, I.; Krassakis, P.; Rentzelos, A.; Koukouzas, N.; Parcharidis, I. Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece. Remote Sens. 2021, 13, 5160. https://doi.org/10.3390/rs13245160
Tselka I, Krassakis P, Rentzelos A, Koukouzas N, Parcharidis I. Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece. Remote Sensing. 2021; 13(24):5160. https://doi.org/10.3390/rs13245160
Chicago/Turabian StyleTselka, Ioanna, Pavlos Krassakis, Alkiviadis Rentzelos, Nikolaos Koukouzas, and Issaak Parcharidis. 2021. "Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece" Remote Sensing 13, no. 24: 5160. https://doi.org/10.3390/rs13245160
APA StyleTselka, I., Krassakis, P., Rentzelos, A., Koukouzas, N., & Parcharidis, I. (2021). Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece. Remote Sensing, 13(24), 5160. https://doi.org/10.3390/rs13245160