Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Aerial Photo Collection and Analysis
2.3. Environmental Variables
2.4. Model Simulation
2.4.1. Environmental Variables Preprocessing
2.4.2. Model Construction and Evaluation
2.4.3. Construction of Ensemble Model
2.4.4. Importance of Environmental Variables
2.4.5. Response of Habitat Suitability to Environmental Variables
3. Results
3.1. Model Accuracy Evaluation
3.2. Screening and Importance of Environmental Factors
3.3. Relationship between Habitat Suitability and Environmental Variables
3.4. The Potential Distribution of O. ochrocephala
3.5. Prediction of O. ochrocephala Distribution under Climate Change Scenarios
4. Discussion
4.1. Potential Distribution of O. ochrocephala and Main Influence Variables
4.2. Changes in Distribution of O. ochrocephala in the Future
4.3. UAV Provides Basic Driving Data for a Niche Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code | Environmental Variables |
---|---|
climate_1 | Annual mean temperature |
climate_2 | Mean diurnal range of temperature |
climate_3 | Isothermality |
climate_4 | Temperature seasonality |
climate_5 | Max temperature of the warmest month |
climate_6 | Min temperature of the coldest month |
climate_7 | Temperature annual range |
climate_8 | Mean temperature of the wettest quarter |
climate_9 | Mean temperature of the driest quarter |
climate_10 | Mean temperature of the warmest quarter |
climate_11 | Mean temperature of the coldest quarter |
climate_12 | Annual precipitation |
climate_13 | Precipitation of the wettest month |
climate_14 | Precipitation of the driest month |
climate_15 | Precipitation seasonality |
climate_16 | Precipitation of the wettest quarter |
climate_17 | Precipitation of the driest quarter |
climate_18 | Precipitation of the warmest quarter |
climate_19 | Precipitation of the coldest quarter |
DEM_1 | Elevation |
DEM_2 | Aspect |
DEM_3 | Slope |
soil_1 | Soil thickness |
soil_2 | Soil organic carbon storage at 0.3–0.6 m depth |
soil_3 | Soil bulk density at 0.3 m depth |
soil_4 | Soil clay content at 0.3 m depth |
soil_5 | Soil coarse debris volume at 0.3 m depth |
soil_6 | Soil silt content at 0.3 m depth |
soil_7 | Soil sediment concentration at 0.3 m depth |
soil_8 | Soil pH at 0.3 m depth |
References
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.C.; Gégout, J.C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef]
- Ding, Y.J.; Yang, J.P.; Liu, S.Y.; Chen, R.S.; Wang, G.X.; Shen, Y.P.; Wang, J.; Xie, C.W.; Zhang, S.Q. Exploration of eco-environment range in the source regions of the Yangtze and Yellow Rivers. Acta Geogr. Sin. 2003, 58, 519–526. [Google Scholar]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Ren, J.Z.; Lin, H.L. Assumed plan on grassland ecological reconstruction in the source region of Yangtse River, Yellow River and Lantsang River. Acta Pratac. Sin. 2005, 14, 1–8. [Google Scholar]
- Chen, Q.G. Grassland deterioration in the source region of the Yangtze-Yellow rivers and integrated control of the ecological environment. Acta Pratac. Sin. 2007, 16, 10–15. [Google Scholar]
- Wang, P.; Lassoie, J.P.; Morreale, S.J.; Dong, S.K. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China. Rangel. J. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Liu, S.B.; Zamanian, K.; Schleuss, P.M.; Zarebanadkouki, M.; Kuzyakov, Y. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agric. Ecosyst. Environ. 2018, 252, 93–104. [Google Scholar] [CrossRef]
- Sun, R.Q.; Cheng, D.L.; Jia, Z.J.; Zhu, Z.Q. Studies on the chemical components of Oxtropis ochrocephala Bunge II. The structures of two triterpenoid taponins. Acta Chim. Sin. 1987, 45, 145–149. [Google Scholar]
- Lu, H.; Wang, S.S.; Zhou, Q.W.; Zhao, Y.N.; Zhao, B.Y. Damage and control of major poisonous plants in the western grasslands of China—A review. Rangel. J. 2012, 34, 329–339. [Google Scholar] [CrossRef]
- He, W.; Guo, L.W.; Fan, P.H.; Guo, B.; Fu, Y.P.; Wei, Y.H. Allelopathy and the rhizospere bacterial community structure of Oxytropis ochrocephala. Acta Prataculturae Sin. 2015, 24, 21–29. [Google Scholar]
- Deng, J.M.; Yang, S.Y.; Shen, H.M. Allelopathy of twelve poisonous plants. Acta Bot. Boreali-Occident. Sin. 2009, 29, 989–995. [Google Scholar]
- Bryan, J.A.; Berlyn, G.P.; Gordon, J.C. Toward a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant Soil 1996, 186, 151–159. [Google Scholar] [CrossRef]
- Pearce, J.; Ferrier, S. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Model. 2000, 128, 127–147. [Google Scholar] [CrossRef]
- Stockwell, D.R.B.; Peterson, A.T. Effects of sample size on accuracy of species distribution models. Ecol. Model. 2002, 148, 1–13. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Raes, N.; Aguirre-Gutiérrez, J. A modeling framework to estimate and project species distributions in space and time. In Mountains, Climate and Biodiversity; Hoorn, C., Perrigo, A., Antonelli, A., Eds.; John Wiley & Sons: Chichester, UK, 2018. [Google Scholar]
- Martínez-Minaya, J.; Cameletti, M.; Conesa, D.; Pennino, M.G. Species distribution modeling: A statistical review with focus in spatio-temporal issues. Stoch. Environ. Res. Risk Assess. 2018, 32, 3227–3244. [Google Scholar] [CrossRef]
- Tessarolo, G.; Lobo, J.M.; Rangel, T.F.; Hortal, J. High uncertainty in the effects of data characteristics on the performance of species distribution models. Ecol. Indic. 2021, 121, 107147. [Google Scholar] [CrossRef]
- Thuiller, W.; Richardson, D.M.; Rouget, M.; Procheş, Ş.; Wilson, J.R.U. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 2006, 87, 1755–1769. [Google Scholar] [CrossRef]
- Tanaka, K.R.; Torre, M.P.; Saba, V.S.; Stock, C.A.; Chen, Y. An ensemble high resolution projection of changes in the future habitat of American lobster and sea scallop in the Northeast US continental shelf. Divers. Distrib. 2020, 26, 987–1001. [Google Scholar] [CrossRef]
- Guo, Y.L.; Li, X.; Zhao, Z.F.; Zain, N. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China. Sci. Total Environ. 2019, 648, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modeling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Rominger, K.; Meyer, S. Application of UAV-based methodology for census of an endangered plant species in a fragile habitat. Remote Sens. 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Xiang, H.T.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Feng, Q.L.; Liu, J.T.; Gong, J.H. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.H. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2017, 38, 2686–2697. [Google Scholar] [CrossRef]
- Chu, H.B.; Wei, J.H.; Li, T.J.; Jia, K. Application of support vector regression for mid- and long-term runoff forecasting in “Yellow River Headwater” region. Procedia Eng. 2016, 154, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yang, M.X.; Wan, G.N.; Wang, X.J. Spatial and temporal precipitation variability in the source region of the Yellow River. Environ. Earth Sci. 2016, 75, 594. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, Y.L. Analysis of ecological environment change and water resources vulnerability in the source region of the Yellow River. Water Resour. Protec. 2002, 4, 21–24. [Google Scholar]
- Yang, M.; Li, X.W.; Ma, J.X. Functioning of poisonous and harmful grasses on grassland and dilemma in ecosystem restoration and economic development. Chin. J. Ecol. 2005, 24, 1177–1181. [Google Scholar]
- Duan, H.C.; Xue, X.; Wang, T.; Kang, W.P.; Liao, J.; Liu, S.L. Spatial and temporal differences in alpine meadow, alpine steppe and all vegetation of the Qinghai-Tibetan Plateau and their responses to climate change. Remote Sens. 2021, 13, 669. [Google Scholar] [CrossRef]
- Yu, G.A.; Brierley, G.; Huang, H.Q.; Wang, Z.; Blue, B.; Ma, Y. An environmental gradient of vegetative controls upon channel planform in the source region of the Yangtze and Yellow Rivers. Catena 2014, 119, 143–153. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.H.; Hou, F.J. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecol. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Qin, Y.; Sun, Y.; Zhang, W.; Qin, Y.; Chen, J.; Wang, Z.; Zhou, Z. Species monitoring using unmanned aerial vehicle to reveal the ecological role of Plateau Pika in maintaining vegetation diversity on the northeastern Qinghai-Tibetan Plateau. Remote Sens. 2020, 12, 2480. [Google Scholar] [CrossRef]
- Wu, T.W.; Song, L.C.; Li, W.P.; Wang, Z.Z.; Zhang, H.; Xin, X.G.; Zhang, Y.W.; Zhang, L.; Li, J.L.; Wu, F.H.; et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res.-PRC 2014, 28, 34–56. [Google Scholar] [CrossRef]
- Huang, B.; YI, S.H.; Zhang, X.Y.; Ma, Q.S.; Xiang, B.; Du, J.X.; Ma, J.H.; Sun, Y. Distribution of Ligularia virgaurea in the source region of the Yellow River based on BIOMOD. Pratac. Sci. 2020, 37, 2198–2210. [Google Scholar]
- Huiller, W.T. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Chang. Biol. 2003, 9, 1353–1362. [Google Scholar] [CrossRef]
- Fielding, A.; Bell, J. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- De Bock, K.W.; Coussement, K.; Van den Poel, D. Ensemble classification based on generalized additive models. Comput. Stat. Data Anal. 2010, 54, 1535–1546. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wang, W.T.; Gao, S.Y.; Wang, S.F. Predictive studies of potential invasive areas for four poisonous weeds in Gansu Grassland. Acta Ecol. Sin. 2019, 39, 5301–5307. [Google Scholar]
- Ji, Y.J.; Wang, L.Y. Study on poisonous plants of Oxytropis in Qinghai grassland. Sichuan Grassl. 2004, 106, 10–12. [Google Scholar]
- Yang, Y.; Li, X.; Kong, X.; Ma, L.; Hu, X.; Yang, Y. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Funct. Integr. Genom. 2015, 15, 295–307. [Google Scholar] [CrossRef]
- Wang, T.; Dan, Y.U.; Jiang-Feng, L.I.; Ke-Ping, M.A. Advances in research on the relationship between climatic change and tree-ring width. Chin. J. Plant Ecol. 2003, 27, 23–33. [Google Scholar]
- Huang, L.M. Investigation and control of poisonous weeds in natural grassland in Huangnan Prefecture. Sichuan Grassl. 2006, 5, 24–26. [Google Scholar]
- Shao, S.H.; Zheng, B.S.; Zhao, C.Z.; Yin, C.Q.; Lang, Y.B.; Zhang, A.L. Toxic grasses of Succuir recorded in The Travels of Marco Polo and their eco-environmental background. Pratac. Sci. 2004, 6, 62–66. [Google Scholar]
- Liu, X.T.; Yuan, Q.; Ni, J. Research advances in modelling plant species distribution in China. Chin. J. Plant Ecol. 2019, 43, 273–283. [Google Scholar] [CrossRef]
- Tabor, J.A.; Koch, J.B. Ensemble models predict invasive bee habitat suitability will expand under future climate scenarios in Hawai’i. Insects 2021, 12, 443. [Google Scholar] [CrossRef]
- Fang, Y.Q.; Zhang, X.H.; Wei, H.Y.; Wang, D.J.; Chen, R.D.; Wang, L.K.; Gu, W. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Sci. Total Environ. 2021, 756, 143841. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.H.; Peng, F.; You, Q.G.; Guo, J.; Tian, X.F.; Xue, X.; Liu, M. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ. Exp. Bot. 2015, 109, 54–62. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.H.; Xue, X. Analysis on the effects of climate warming on growth and phenology of alpine plants. J. Arid Resour. Environ. 2013, 27, 137–141. [Google Scholar]
- Xu, M.H.; Xue, X. A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2013, 33, 2071–2083. [Google Scholar]
- Chen, J.; Huang, W.Y.; Zhao, B.Y.; Mo, C.H. Effect of fermentation time on the quality and swainsonine content of Oxytropis ochrocephala silage. Prog. Vet. Med. 2019, 40, 77–81. [Google Scholar]
- Guo, Y.L.; Li, X.; Zhao, Z.F.; Wei, H.Y. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China. Sci. China 2019, 49, 537–553. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, F.J.; Angerer, J.P.; Yi, S.H. Effects of topography and land-use patterns on the spatial heterogeneity of terracette landscapes in the Loess Plateau, China. Ecol. Indic. 2020, 109, 105839. [Google Scholar] [CrossRef]
- Huang, X.; Ma, L.; Chen, C.; Zhou, H.; Yao, B.; Ma, Z. Predicting the suitable geographical distribution of Sinadoxa corydalifolia under different climate change scenarios in the Three-River Region using the MaxEnt model. Plants 2020, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Y.; Ma, Q.S.; Zhang, X.Y.; Ma, J.H.; Yi, S.H.; Li, B.C.; Zhang, J.G.; Lu, X.M.; Sun, Y. Preliminary exploration of monitoring Gynaephora alpherakii using unmanned aerial vehicles (UAV). Pratac. Sci. 2020, 37, 2106–2114. [Google Scholar]
- Yang, Y.H.S.; Xi, X.Q.; Zhong, X.T.; Eisenhauer, N.; Sun, S.C. N addition suppresses the performance of grassland caterpillars (Gynaephora alpherakjj) by decreasing ground temperature. Ecosphere 2017, 8, e01755. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, G.; Govedarica, M.; Alvareztaboada, F. A deep learning model for automatic plastic mapping using unmanned aerial vehicle (UAV) data. Remote Sens. 2020, 12, 1515. [Google Scholar] [CrossRef]
Code | Environmental Variables | Percent Importance (%) |
---|---|---|
climate_12 | Annual precipitation | 41.01 |
climate_1 | Annual mean temperature | 19.44 |
soil_8 | Soil pH at 0.3 m depth | 8.75 |
DEM_1 | Elevation | 7.97 |
soil_2 | Soil organic carbon storage | 6.40 |
climate_3 | Isothermality | 4.72 |
climate_2 | Mean diurnal range of temperature | 3.47 |
DEM_3 | Slope | 2.68 |
soil_5 | Soil coarse debris volume at 0.3 m depth | 2.33 |
DEM_2 | Aspect | 1.78 |
soil_6 | Soil silt content at 0.3 m depth | 0.91 |
climate_14 | Precipitation of the driest period | 0.54 |
Scenarios | Time | Probability | Significance |
---|---|---|---|
Current | current | 0.2695 ± 0.0221 | Ab |
RCP4.5 | 50 s | 0.2805 ± 0.0163 | Ab |
70 s | 0.2918 ± 0.0102 | Ab | |
RCP8.5 | 50 s | 0.3087 ± 0.0104 | Aa |
70 s | 0.3126 ± 0.0146 | Aa |
Suitability | Scenarios | Time | Percentage (%) | Significance |
---|---|---|---|---|
Unsuitable habitat 0–0.25 | Current | current | 55.38 ± 4.19 | Aa |
RCP4.5 | 50 s | 57.84 ± 4.17 | Aa | |
70 s | 54.94 ± 2.13 | Aa | ||
RCP8.5 | 50 s | 52.88 ± 0.86 | Aa | |
70 s | 53.85 ± 3.80 | Aa | ||
Low suitable habitat 0.26–0.50 | Current | current | 24.99 ± 1.86 | Aa |
RCP4.5 | 50 s | 17.82 ± 3.57 | Ab | |
70 s | 20.13 ± 2.82 | Ab | ||
RCP8.5 | 50 s | 18.57 ± 1.63 | Ab | |
70 s | 16.71 ± 3.72 | Ab | ||
Moderately suitable habitat 0.51–0.75 | Current | current | 16.98 ± 3.47 | Aa |
RCP4.5 | 50 s | 17.82 ± 3.57 | Aa | |
70 s | 19.51 ± 5.84 | Aa | ||
RCP8.5 | 50 s | 22.11 ± 1.61 | Aa | |
70 s | 22.09 ± 4.72 | Aa | ||
High suitable habitat 0.76–1.00 | Current | current | 2.65 ± 0.90 | Aa |
RCP4.5 | 50 s | 4.84 ± 5.08 | Aa | |
70 s | 5.7 ± 2.32 | Aa | ||
RCP8.5 | 50 s | 6.44 ± 2.48 | Aa | |
70 s | 7.34 ± 5.59 | Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yuan, Y.; Zhu, Z.; Ma, Q.; Yu, H.; Li, M.; Ma, J.; Yi, S.; He, X.; Sun, Y. Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sens. 2021, 13, 5129. https://doi.org/10.3390/rs13245129
Zhang X, Yuan Y, Zhu Z, Ma Q, Yu H, Li M, Ma J, Yi S, He X, Sun Y. Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sensing. 2021; 13(24):5129. https://doi.org/10.3390/rs13245129
Chicago/Turabian StyleZhang, Xinyu, Yaxin Yuan, Zequn Zhu, Qingshan Ma, Hongyan Yu, Meng Li, Jianhai Ma, Shuhua Yi, Xiongzhao He, and Yi Sun. 2021. "Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model" Remote Sensing 13, no. 24: 5129. https://doi.org/10.3390/rs13245129
APA StyleZhang, X., Yuan, Y., Zhu, Z., Ma, Q., Yu, H., Li, M., Ma, J., Yi, S., He, X., & Sun, Y. (2021). Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sensing, 13(24), 5129. https://doi.org/10.3390/rs13245129