S2Looking: A Satellite Side-Looking Dataset for Building Change Detection
Abstract
:1. Introduction
1.1. Change Detection Methods
1.2. Change Detection Datasets
1.3. Contributions
2. Materials and Methods
2.1. Motivation for the New S2Looking Dataset
2.2. The S2Looking Data Processing Pipeline
2.3. The S2Looking Challenge
- Sparse building updates. The changed building instances in the S2Looking dataset are far sparser than those in the LEVIR-CD+ dataset due to the differences between rural and urban areas. Most rural areas are predominantly covered with farmland and forest, while urban areas are predominantly covered with buildings that are constantly being updated. The average number of change instances in S2Looking is 13.184, while the average number of change instances in LEVIR-CD is 49.188 [23]. This makes it more difficult for networks to extract building features during the training process.
- Side-looking images. The S2Looking dataset concentrates on side-looking remote-sensing imagery. This makes the change-detection problem different from ones relating to datasets consisting of Google Earth images. The buildings have been imaged by satellites from different sides and projected along varying off-nadir angles into 2D images, as we see in Figure 3. This means that a change-detection model is going to have to identify the same building imaged from different directions and detect any updated parts.
- Rural complexity. Seasonal variations and land-cover changes unrelated to building updates are more obvious in rural areas than in urban areas. Farmland is typically covered by different crops or withered vegetation, depending on the season, giving it a different appearance in different remote-sensing images. A suitable change-detection model needs to distinguish building changes from irrelevant changes in order to generate fewer false-positive pixels.
- Registration accuracy. The registration process for the bitemporal remote-sensing images in S2Looking is not completely accurate due to the side-looking nature of the images and terrain undulations. Based on the manual screening by experts, we have managed to bring the registration accuracy to 8 pixels or better, but this necessitates a change-detection model that can tolerate slightly inaccurate registration.
2.4. Challenge Restrictions
3. Results
3.1. Benchmark Setup
3.2. Benchmark Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Afify, H.A. Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. World Pumps 2011, 50, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Demir, B.; Bovolo, F.; Bruzzone, L. Updating Land-Cover Maps by Classification of Image Time Series: A Novel Change-Detection-Driven Transfer Learning Approach. IEEE Trans. Geosci. Remote Sens. 2013, 51, 300–312. [Google Scholar] [CrossRef]
- Hégarat-Mascle, S.L.; Ottlé, C.; Guérin, C. Land cover change detection at coarse spatial scales based on iterative estimation and previous state information. Remote Sens. Environ. 2018, 95, 464–479. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Jin, X.; Plaza, A.; Wang, X.; Xiao, L.; Du, P. Automatic Change Detection in High-Resolution Remote Sensing Images by Using a Multiple Classifier System and Spectral—Spatial Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3439–3451. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; López-Granados, F.; Caballero-Novella, J.J.; Pea-Barragán, J.M.; García-Torres, L. Understanding the errors in input prescription maps based on high spatial resolution remote sensing images. Precis. Agric. 2012, 13, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Peng, D.; Huang, X. Object-Based Change Detection for VHR Images Based on Multiscale Uncertainty Analysis. IEEE Geoence Remote Sens. Lett. 2017, 15, 13–17. [Google Scholar] [CrossRef]
- Leichtle, T.; Gei, C.; Wurm, M.; Lakes, T.; Taubenbck, H. Unsupervised change detection in VHR remote sensing imagery—An object-based clustering approach in a dynamic urban environment. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 15–27. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. Isprs J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Li, H. DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1194–1206. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2115–2118. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model. IEEE Geosci. Remote Sens. Lett. 2020, 18, 811–815. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W. A Feature Difference Convolutional Neural Network-Based Change Detection Method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7232–7246. [Google Scholar] [CrossRef]
- Benedek, C.; Sziranyi, T. Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3416–3430. [Google Scholar] [CrossRef] [Green Version]
- Benedek, C.; SziráNyi, T. A Mixed Markov Model for Change Detection in Aerial Photos with Large Time Differences. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008. [Google Scholar]
- Bourdis, N.; Marraud, B.; Sahbi, H. Constrained optical flow for aerial image change detection. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Alkhelaiwi, M.; Boulila, W.; Ahmad, J.; Koubaa, A.; Driss, M. An Efficient Approach Based on Privacy-Preserving Deep Learning for Satellite Image Classification. Remote Sens. 2021, 13, 2221. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Jiang, J. China’s high-resolution optical remote sensing satellites and their mapping applications. Geo-Spat. Inf. Sci. 2021, 24, 85–94. [Google Scholar] [CrossRef]
- Habib, A.F.; Kim, E.M.; Kim, C.J. New Methodologies for True Orthophoto Generation. Photogramm. Eng. Remote Sens. 2007, 73, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Weir, N.; Lindenbaum, D.; Bastidas, A.; Etten, A.V.; Tang, H. SpaceNet MVOI: A Multi-View Overhead Imagery Dataset. In Proceedings of the IEEE International Conference on Computer Vision. IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Wang, M.; Tan, K.; Jia, X.; Wang, X.; Chen, Y. A Deep Siamese Network with Hybrid Convolutional Feature Extraction Module for Change Detection Based on Multi-sensor Remote Sensing Images. Remote Sens. 2020, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xu, G.; Chen, K.; Yan, M.; Sun, X. Triplet-Based Semantic Relation Learning for Aerial Remote Sensing Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2019, 16, 266–270. [Google Scholar] [CrossRef]
- Caye Daudt, R.; Le Saux, B.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, W.; Shi, Z. Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5603216. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection With Transformers. IEEE Trans. Geosci. Remote Sens. 2021, 1–14. [Google Scholar] [CrossRef]
- Kaya, M.; Bilge, H.Ş. Deep Metric Learning: A Survey. Symmetry 2019, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.; Mahony, N.O.; Campbell, S.; Carvalho, A.; Riordan, D. Deep Learning vs. Traditional Computer Vision. In Proceedings of the Computer Vision Conference (CVC) 2019, Las Vegas, NV, USA, 2–3 May 2019. [Google Scholar]
- Jiang, H.; Hu, X.; Li, K.; Zhang, J.; Gong, J.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Computer Vision & Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Rasouli, A.; Kotseruba, I.; Kunic, T.; Tsotsos, J. PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2020. [Google Scholar]
- Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD—A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Shao, S.; Li, Z.; Zhang, T.; Peng, C.; Sun, J. Objects365: A Large-Scale, High-Quality Dataset for Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Zi, B.; Chang, M.; Chen, J.; Ma, X.; Jiang, Y. WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection. In Proceedings of the MM ’20: The 28th ACM International Conference on Multimedia, New York, NY, USA, 12–16 October 2020. [Google Scholar]
- Shao, D.; Zhao, Y.; Dai, B.; Lin, D. FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Min, W.; Liu, L.; Wang, Z.; Luo, Z.; Wei, X.; Wei, X.; Jiang, S. ISIA Food-500: A Dataset for Large-Scale Food Recognition via Stacked Global-Local Attention Network. In Proceedings of the 28th ACM International Conference on Multimedia, New York, NY, USA, 12–16 October 2020; pp. 393–401. [Google Scholar] [CrossRef]
- Wang, P.; Jiao, B.; Yang, L.; Yang, Y.; Zhang, S.; Wei, W.; Zhang, Y. In Proceedings of the Vehicle Re-identification in Aerial Imagery: Dataset and Approach. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Mandal, M.; Kumar, L.K.; Vipparthi, S.K. MOR-UAV: A Benchmark Dataset and Baselines for Moving Object Recognition in UAV Videos. In Proceedings of the 28th ACM International Conference on Multimedia (MM ’20), New York, NY, USA, 12–16 October 2020; pp. 2626–2635. [Google Scholar] [CrossRef]
- Liu, J.; Ji, S. A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi-View Stereo Reconstruction From an Open Aerial Dataset. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; pp. 6049–6058. [Google Scholar] [CrossRef]
- Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 172–17209. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Hosfelt, R.; Sajeev, S.; Patel, N.; Goodman, B.; Doshi, J.; Heim, E.; Choset, H.; Gaston, M. xBD: A Dataset for Assessing Building Damage from Satellite Imagery. arXiv 2019, arXiv:1911.09296. [Google Scholar]
- Chen, S.A.; Escay, A.; Haberland, C.; Schneider, T.; Staneva, V.; Choe, Y. Benchmark Dataset for Automatic Damaged Building Detection from Post-Hurricane Remotely Sensed Imagery. arXiv 2018, arXiv:1812.05581. [Google Scholar]
- Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges. arXiv 2021, arXiv:2009.03137. [Google Scholar]
- Sun, X.; Wang, P.; Yan, Z.; Xu, F.; Wang, R.; Diao, W.; Chen, J.; Li, J.; Feng, Y.; Xu, T.; et al. FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in High-Resolution Remote Sensing Imagery. arXiv 2021, arXiv:2103.05569. [Google Scholar]
- Pepe, M.; Costantino, D.; Alfio, V.S.; Vozza, G.; Cartellino, E. A Novel Method Based on Deep Learning, GIS and Geomatics Software for Building a 3D City Model from VHR Satellite Stereo Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 697. [Google Scholar] [CrossRef]
- Gao, L.; Shi, W.; Zhu, J.; Shao, P.; Sun, S.; Li, Y.; Wang, F.; Gao, F. Novel Framework for 3D Road Extraction Based on Airborne LiDAR and High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 4766. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Hernández-López, D.; Piedelobo, L.; Moreno, M.A.; Chakhar, A.; Ortega-Terol, D.; González-Aguilera, D. Design of a Local Nested Grid for the Optimal Combined Use of Landsat 8 and Sentinel 2 Data. Remote Sens. 2021, 13, 1546. [Google Scholar] [CrossRef]
- Singh, K.K.; Frazier, A.E. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 2018, 39, 5078–5098. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yamamoto, Y. Using Multimodal Learning Model for Earthquake Damage Detection Based on Optical Satellite Imagery and Structural Attributes. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Yamazaki, F.; Kouchi, K.I.; Kohiyama, M.; Muraoka, N.; Matsuoka, M. Earthquake damage detection using high-resolution satellite images. In Proceedings of the Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Mi, W.; Chen, C.; Pan, J.; Ying, Z.; Chang, X. A Relative Radiometric Calibration Method Based on the Histogram of Side-Slither Data for High-Resolution Optical Satellite Imagery. Remote Sens. 2018, 10, 381. [Google Scholar]
- Wang, M.; Cheng, Y.; Tian, Y.; He, L.; Wang, Y. A New On-Orbit Geometric Self-Calibration Approach for the High-Resolution Geostationary Optical Satellite GaoFen4. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1670–1683. [Google Scholar] [CrossRef]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogramm. Rec. 2012, 27, 58–73. [Google Scholar] [CrossRef]
- Barazzetti, L.; Brumana, R.; Cuca, B.; Previtali, M. Change detection from very high resolution satellite time series with variable off-nadir angle. In Proceedings of the SPIE the International Society for Optical Engineering, Paphos, Cyprus, 16–19 March 2015. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Parente, L.; Chandler, J.H.; Dixon, N. Automated Registration of SfM-MVS Multitemporal Datasets Using Terrestrial and Oblique Aerial Images. Photogramm. Rec. 2021, 36, 12–35. [Google Scholar] [CrossRef]
- Ramu, G.; Babu, S. Image forgery detection for high resolution images using SIFT and RANSAC algorithm. In Proceedings of the International Conference on Communication & Electronics Systems, Coimbatore, India, 19–20 October 2017; pp. 850–854. [Google Scholar]
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
Dataset | Pairs | Size | Is Real? | Resolution/m | Change Instances | Change Pixels |
---|---|---|---|---|---|---|
SZTAKI [20,21] | 12 | 952 × 640 | √ | 1.5 | 382 | 412,252 |
OSCD [16] | 24 | 600 × 600 | √ | 10 | 1048 | 148,069 |
AICD [22] | 500 | 600 × 800 | × | none | 500 | 203,355 |
LEVIR-CD [23] | 637 | 1024 × 1024 | √ | 0.5 | 31,333 | 30,913,975 |
Change Detection Dataset [19] | 7/4 | 4725 × 2700/1900 × 1000 | √ | 0.03 to 1 | 1987/145 | 9,198,562/400,279 |
WHU Building Dataset [1] | 1 | 32,507 × 15,354 | √ | 0.075 | 2297 | 21,352,815 |
LEVIR-CD+ | 985 | 1024 × 1024 | √ | 0.5 | 48,455 | 47,802,614 |
S2Looking | 5000 | 1024 × 1024 | √ | 0.5∼0.8 | 65,920 | 69,611,520 |
Type | Item | Value |
---|---|---|
Image Info | Total Image Pairs | 5000 |
Image Size | 1024 × 1024 | |
Image Resolution | 0.5∼0.8 m | |
Time Span | 1∼3 years | |
Modality | RGB image | |
Image Format | PNG 8bit | |
Off-Nadir Angle Info | Average Absolute Value | 9.861 |
Median Absolute Value | 9.00 | |
Max Absolute Value | 35.370 | |
Standard Deviation | 12.197 | |
Accuracy Info | Registration Accuracy | pixels |
Annotation Accuracy | pixels |
Method | LEVIR-CD+ | S2Looking | ||||
---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Precision | Recall | F1-Score | |
FC-EF [16] | 0.6130 | 0.7261 | 0.6648 | 0.8136 | 0.0895 | 0.0765 |
FC-Siam-Conc [16] | 0.6624 | 0.8122 | 0.7297 | 0.6827 | 0.1852 | 0.1354 |
FC-Siam-Diff [16] | 0.7497 | 0.7204 | 0.7348 | 0.8329 | 0.1576 | 0.1319 |
DTCDSCN [17] | 0.8036 | 0.7503 | 0.7760 | 0.6858 | 0.4916 | 0.5727 |
STANet-Base [23] | 0.6214 | 0.8064 | 0.7019 | 0.2575 | 0.5629 | 0.3534 |
STANet-BAM [23] | 0.6455 | 0.8281 | 0.7253 | 0.3119 | 0.5291 | 0.3924 |
STANet-PAM [23] | 0.7462 | 0.8454 | 0.7931 | 0.3875 | 0.5649 | 0.4597 |
CDNet [33] | 0.8896 | 0.7345 | 0.8046 | 0.6748 | 0.5493 | 0.6056 |
BiT [34] | 0.8274 | 0.8285 | 0.8280 | 0.7264 | 0.5385 | 0.6185 |
Precision | Recall | F1-Score | |
---|---|---|---|
FC-EF | 0.7605 | 0.1155 | 0.1825 |
FC-Siam-Conc | 0.7461 | 0.1663 | 0.2541 |
FC-Siam-Diff | 0.6609 | 0.115 | 0.1749 |
DTCDSCN | 0.7403 | 0.6155 | 0.6436 |
STANet-Base | 0.3852 | 0.7344 | 0.4822 |
STANet-BAM | 0.4366 | 0.7215 | 0.5206 |
STANet-PAM | 0.5103 | 0.7477 | 0.5865 |
CDNet | 0.8036 | 0.7375 | 0.7545 |
BiT | 0.8512 | 0.733 | 0.7738 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Lu, Y.; Chen, H.; Wei, H.; Xie, D.; Yue, J.; Chen, R.; Lv, S.; Jiang, B. S2Looking: A Satellite Side-Looking Dataset for Building Change Detection. Remote Sens. 2021, 13, 5094. https://doi.org/10.3390/rs13245094
Shen L, Lu Y, Chen H, Wei H, Xie D, Yue J, Chen R, Lv S, Jiang B. S2Looking: A Satellite Side-Looking Dataset for Building Change Detection. Remote Sensing. 2021; 13(24):5094. https://doi.org/10.3390/rs13245094
Chicago/Turabian StyleShen, Li, Yao Lu, Hao Chen, Hao Wei, Donghai Xie, Jiabao Yue, Rui Chen, Shouye Lv, and Bitao Jiang. 2021. "S2Looking: A Satellite Side-Looking Dataset for Building Change Detection" Remote Sensing 13, no. 24: 5094. https://doi.org/10.3390/rs13245094
APA StyleShen, L., Lu, Y., Chen, H., Wei, H., Xie, D., Yue, J., Chen, R., Lv, S., & Jiang, B. (2021). S2Looking: A Satellite Side-Looking Dataset for Building Change Detection. Remote Sensing, 13(24), 5094. https://doi.org/10.3390/rs13245094