Spatial Multi-Criterion Decision Making (SMDM) Drought Assessment and Sustainability over East Africa from 1982 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Drought Indices
- (1)
- Standard Precipitation Index (SPI)
- (2)
- Standard Precipitation Evapotranspiration Index (SPEI)
- (3)
- Vegetation Condition Index (VCI)
- (4)
- Temperature Condition Index (TCI)
2.3.2. Detrended Fluctuation Analysis (DFA)
- Subtract the seasonal trend from the data.
- Create a profile .
- Divide the time series into equal non-overlapping segments of fixed length to determine the fluctuations in G.
- Compute the ideal polynomial fit of the profile and obtain the variance (Equation (1)) around the fit for each segment ,
- Take the mean of over all the segments () to get the value of the fluctuation function .
2.3.3. Spatial Multi-Criterion Decision Making (SMDM)
3. Results and Discussion
3.1. Precipitation Records of 34 Years over East Africa
3.2. Analysis of Drought Indices
3.3. Persistence in Drought over East Africa
3.4. Spatial Multi-Criterion Decision Making
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, M.; Garrido, A.; Gómez-Ramos, A. Economic analysis of drought risk: An application for irrigated agriculture in Spain. Agric. Water Manag. 2011, 98, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Hijioka, Y.; Lasco, R.; Surjan, A.; Pereira, J. Climate Change 2014 Impacts, Adaptation, and Vulnerability. Part B Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hao, C.; Zhang, J.; Yao, F. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Haroon, M.A.; Zhang, J.; Yao, F. Drought monitoring and performance evaluation of MODIS-based drought severity index (DSI) over Pakistan. Nat. Hazards 2016, 84, 1349–1366. [Google Scholar] [CrossRef]
- von Gunten, D.; Wöhling, T.; Haslauer, C.; Merchán, D.; Causapé, J.; Cirpka, O. Using an integrated hydrological model to estimate the usefulness of meteorological drought indices in a changing climate. Hydrol. Earth Syst. Sci. 2016, 20, 4159–4175. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol. 2018, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrol. Earth Syst. Sci. 2018, 22, 4547–4564. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Regional climate projections for impact assessment studies in East Africa. Environ. Res. Lett. 2019, 14, 044031. [Google Scholar] [CrossRef]
- Igbawua, T.; Zhang, J.H.; Yao, F.M.; Zhang, D. Assessment of moisture budget over West Africa using MERRA-2’s aerological model and satellite data. Clim. Dyn. 2019, 52, 83–106. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Lei, T.; Peng, L. Drought evolution, severity and trends in mainland China over 1961–2013. Sci. Total Environ. 2018, 616–617, 73–89. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Zhang, H.R.; Bai, Y.; Zhang, J.H. Monitoring drought using composite drought indices based on remote sensing. Sci. Total Environ. 2020, 711, 134585. [Google Scholar] [CrossRef]
- Zhou, X.J.; Wang, P.X.; Tansey, K.; Zhang, S.Y.; Li, H.; Wang, L. Developing a fused vegetation temperature condition index for drought monitoring at field scales using Sentinel-2 and MODIS imagery. Comput. Electron. Agric. 2020, 168, 105144. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Yang, S.; Rinzin, S.; Prodhan, F.A.; Sharma, T.P.P. Assessment of Drought Impact on Net Primary Productivity in the Terrestrial Ecosystems of Mongolia from 2003 to 2018. Remote Sens. 2021, 13, 2522. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Z.; Yao, F.; Yang, L.; Hao, C. Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- American Meteorological Society. Meteorological drought-policy statement. Bull. Am. Meteorol. Soc. 1997, 78, 847–849. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Zink, M. Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany. J. Hydrometeorol. 2013, 14, 47–68. [Google Scholar] [CrossRef]
- EM-DAT. 2014 The International Disaster Database. Available online: http://www.emdat.be/glossary/9#letterd (accessed on 14 September 2020).
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef] [Green Version]
- Love, R. Economic Drivers of Conflict and Cooperation in the Horn of Africa. Chatham House Briefing Paper. December 2009. Available online: www.chathamhouse.org/publications/papers/view/109208 (accessed on 18 April 2012).
- Funk, C.; Husak, G.; Michaelsen, J.; Shukla, S.; Hoell, A.; Lyon, B.; Rowland, J. Attribution of 2012 and 2003–2012 rainfall deficits in eastern Kenya and southern Somalia. Bull. Am. Meteorol. Soc. 2013, 94, S45–S48. [Google Scholar]
- Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J.B.; Robertson, F.R.; Husak, G. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci. 2014, 18, 4965–4978. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Huntingford, C. Brief communication: Drought likelihood for East Africa. Nat. Hazards Earth Syst. Sci. 2018, 18, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, L.; Diallo, I.; Coppola, E.; Giorgi, E. Seasonal and Intraseasonal changes of African monsoon climates in 21st century CORDEX projects. Clim. Chang. 2014, 1255, 53–65. [Google Scholar] [CrossRef]
- Tierney, J.E.; Smerdon, J.E.; Anchukaitis, K.J.; Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 2013, 493, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Artan, G.A. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 2019, 52, 2029–2053. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Lamb, P.J.; Trenberth, K.E.; Hulme, M.; Jones, P.D.; Xie, P. The recent Sahel drought is real. Int. J. Climatol. 2004, 24, 1323–1331. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Lal, R. Recent spatiotemporal temperature and rainfall variability and trends over the Upper Blue Nile River Basin, Ethiopia. Int. J. Climatol. 2014, 34, 2278–2292. [Google Scholar] [CrossRef]
- Tefera, A.S.; Ayoade, J.O.; Bello, N.J. Analyses of the relationship between drought occurrences and their causal factors in Tigray Region, Northern Ethiopia. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–18. [Google Scholar] [CrossRef]
- Linke, A.; McCabe, J.; O’Loughlin, J.; Tir, J.; Witmer, F. Drought, Local Institutional Context, and Support for Violence in Kenya. J. Confl. Resolut. 2016, 62, 1544–1578. [Google Scholar] [CrossRef]
- Kalisa, W.; Zhang, J.; Igbawua, T.; Ujoh, F.; Ebohon, O.J.; Namugize, J.N.; Yao, F. Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agric. Water Manag. 2020, 237, 106195. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January; pp. 179–184.
- Pramudya, Y.; Onishi, T. Assessment of the Standardized Precipitation Index (SPI) in Tegal City, Central Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 129, 012019. [Google Scholar] [CrossRef]
- Igbawua, T.; Zhang, J.; Yao, F.; Ali, S. Long range correlation in vegetation over West Africa from 1982 to 2011. IEEE Access 2019, 119151–119165. [Google Scholar] [CrossRef]
- Tran, T.V.; Tran, D.X.; Myint, S.W.; Latorre-Carmona, P.; Ho, D.D.; Tran, P.H.; Dao, H.N. Assessing spatiotemporal drought dynamics and its related environmental issues in the Mekong River Delta. Remote Sens. 2019, 11, 2742. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.V.; Tran, D.X.; Nguyen, H.; Latorre-Carmona, P.L.; Myint, S.W. Charactering spatiotemporal vegetation variations using LANDSAT time-series and Hurst exponent index in the Mekong River Delta. Land Degrad. Dev. 2020, 32, 3507–3523. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Bao, Y.; Lai, Q.; Lian, X.; Li, N.; Bao, Y. Analyzing vegetation dynamic trend on the Mongolian plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018, 28, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Arciniegas, G.; Janssen, R.; Omtzigt, N. Map-based multicriteria analysis to support interactive land use allocation. Int. J. Geogr. Inf. Sci. 2011, 25, 1931–1947. [Google Scholar] [CrossRef]
- Lima, E.; Gorski, E.; Loures, E.F.R.; Portela Santos, E.A.; Deschamps, F. Applying Machine Learning to AHP Multcriteria Decision Making Method to Assets Prioritization in the Context of Industrial Maintenance 4.0. IFAC-PapersOnLine 2019, 52, 2152–2157. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and Climatic Variability of Rainfall over Eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J.F. Africa, climate of. In Climatology. Encyclopedia of Earth Science; Springer: Boston, MA, USA, 1987. [Google Scholar] [CrossRef]
- Yong, W.; Zablon, S.W. Variability of Diurnal Temperature Range in East Africa During 1921–2010. J. Trop. Meteorol. 2017, 23, 345–356. [Google Scholar]
- Haile, G.G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, impacts and resilience. Earth-Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Harris, I.P.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g Time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Ntale, H.; Gan, T.Y. Drought Indices and their Application to East Africa. Int. J. Climatol. 2003, 23, 1335–1357. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980; Reprinted in RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index—SPEI. J. Clim. Appl. Meteorol. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Ogunrinde, A.T.; Oguntunde, P.G.; Olasehinde, D.A.; Fasinmirin, J.T.; Akinwumiju, A.S. Drought Spatiotemporal Characterization using self-calibrating Palmer Drought Severity Index in the Northern Region of Nigeria. Results Eng. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by SPI and SEI at various timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Bento, V.A.; Trigo, I.F.; Gouveia, C.M.; DaCamara, C.C. Contribution of Land Surface Temperature (TCI) to Vegetation Health Index: A Comparative Study Using Clear Sky and All-Weather Climate Data Records. Remote Sens. 2018, 10, 1324. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Liang, J.; Zhao, Y.; Wang, H.; Xie, J.; Lu, X.; Li, F. Assessment of vegetation growth and drought conditions using satellite-based indices in Jin-Jin-ji region of China. Sci. Rep. 2021, 11, 13775. [Google Scholar] [CrossRef] [PubMed]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-K.; Havlin, S.; Stanley, H.; Goldberger, A. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- Karleuša, B.; Hajdinger, A.; Tadić, L. The Application of Multi-Criteria Analysis Methods for the Determination of Priorities in the Implementation of Irrigation Plans. Water 2019, 11, 501. [Google Scholar] [CrossRef] [Green Version]
- Ujoh, F.; Igbawua, T.; Paul, M.O. Suitability mapping for rice cultivation in Benue State, Nigeria using satellite data. Geo-Spat. Inf. Sci. 2019, 22, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jang, Y.; Lee, S. Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool. J. Arid Manag. 2013, 128, 941–948. [Google Scholar] [CrossRef]
- Brázdil, R.; Kiss, A.; Luterbacher, J.; Nash, D.; Řezníčková, L. Documentary data and the study of past droughts: A global state of the art. Clim. Past 2018, 14, 1915–1960. [Google Scholar] [CrossRef] [Green Version]
- Siderius, C.; Gannon, K.; Ndiyoi, M.; Opere, A.; Batisani, N.; Olago, D.; Pardoe, J.; Conway, D. Hydrological Response and Complex Impact Pathways of the 2015/2016 El Niño in Eastern and Southern Africa. Earth's Future 2018, 6, 1–22. [Google Scholar] [CrossRef]
- Karina, W.; Ursula, G.; Volker, H. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar]
- Dingwell, J.B.; Cusumano, J.P. Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking. Gait Posture 2010, 32, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koscielny-Bunde, E.; Kantelhardt, J.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 2006, 322, 120–137. [Google Scholar] [CrossRef] [Green Version]
- Ndomeni, C.W.; Cattani, E.; Merino, A.; Levizzani, V. An observational study of the variability of East African rainfall with respect to sea surface temperature and soil moisture. Q. J. R. Meteorol. Soc. 2018, 144, 384–404. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, B.; Katurji, M.; Meyer, H.; Appelhans, T.; Otte, I.; Nauss, T. Atmospheric moisture pathways of East Africa and implications for water recycling at Mount Kilimanjaro. Int. J. Climatol. 2020, 40, 4477–4496. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World Drought Frequency, Duration, and Severity for 1951–2010. Int. J. Climatol. 2013, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.M.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts of climate change on drought patterns over East Africa. Earth's Future 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Yagoub, Y.; Li, Z.; Musa, O.S.; Anjum, M.N.; Wang, F.; Bo, Z. Detection of Drought cycles Pattern in two Countries (Sudan and South Sudan) by using Standardized Precipitation Index SPI. Am. J. Environ. Eng. 2017, 7, 93–105. [Google Scholar] [CrossRef]
Data | Quantity | Resolution | Temporal Span |
---|---|---|---|
CRU | Precipitation | 0.5 × 0.5 | 1982–2015 |
Potential Evapotranspiration | 0.5 × 0.5 | 1982–2015 | |
Temperature | 0.5 × 0.5 | 1982–2015 | |
AVHRR GIMMS | NDVI | 0.083 × 0.083 | 1982–2015 |
Class | SPI, SPEI, Values | TCI, VCI (%) |
---|---|---|
Extremely wet | ≥2.00 | 90–100 |
Severely wet | 1.50–1.99 | 80–90 |
Moderately wet | 1.00–1.49 | 70–80 |
Mildly wet | 0.50–0.99 | 60–70 |
Normal | 0.49–−0.49 | 40–60 |
Mildly dry | −0.5–−0.99 | 30–40 |
Moderately dry | −1.00–−1.49 | 20–30 |
Severely dry | −1.50–−1.99 | 10–20 |
Extremely dry | ≤−2.00 | 0–10 |
Hurst/Trend | OLR | ||
---|---|---|---|
DFA | Persistence 0.5 < h < 1 | Sustainability/Improvement | Sustainability/Degradation |
Persistence 0 < h < 0.5 | Unsustainability/Improvement | Unsustainability/Degradation | |
Persistence h = 0.5 | Random/Improvement | Random/Degradation | |
Persistence h > 1 | Unpredictable/Improvement | Unpredictable/Degradation |
SPEI-3 | SPEI-6 | SPEI-12 | SPI-1 | SPI-3 | SPI-6 | SPI-12 | VCI-1 | VCI-3 | VCI-6 | VCI-12 | TCI-1 | TCI-3 | TCI-6 | TCI-12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPEI-1 | 0.62 ** | 0.44 ** | 0.28 ** | 0.86 ** | 0.62 ** | 0.39 ** | 0.20 ** | 0.19 ** | 0.12 * | 0.06 | −0.03 | 0.20 ** | 0.13 * | 0.13 * | 0.18 ** |
SPEI-3 | 0.61 ** | 0.33 ** | 0.70 ** | 1.00 ** | 0.70 ** | 0.42 ** | 0.35 ** | 0.32 ** | 0.23 ** | 0.12 * | 0.01 | −0.01 | −0.08 | −0.12 * | |
SPEI-6 | 0.66 ** | 0.36 ** | 0.61 ** | 0.91 ** | 0.59 ** | 0.32 ** | 0.42 ** | 0.46 ** | 0.26 ** | 0.13 * | 0.17 ** | 0.21 ** | 0.21 ** | ||
SPEI-12 | 0.17 ** | 0.33 ** | 0.54 ** | 0.89 ** | 0.17 ** | 0.26 ** | 0.39 ** | 0.46 ** | 0.11 * | 0.14 * | 0.18 * | 0.25 ** | |||
SPI-1 | 0.70 ** | 0.45 ** | 0.23 ** | 0.18 ** | 0.13 * | 0.07 | 0.00 | 0.03 | −0.03 | −0.08 | −0.11 * | ||||
SPI-3 | 0.70 ** | 0.42 ** | 0.35 | 0.32 ** | 0.23 ** | 0.12 * | −0.00 | −0.02 | −0.08 | −0.12 | |||||
SPI-6 | 0.65 ** | 0.33 ** | 0.42 ** | 0.47 ** | 0.31 ** | −0.02 | −0.02 | −0.06 | −0.14 * | ||||||
SPI-12 | 0.18 ** | 0.26 ** | 0.42 ** | 0.51 ** | −0.06 | −0.08 | −0.12 * | −0.18 ** | |||||||
VCI-1 | 0.69 ** | 0.47 ** | 0.35 ** | 0.11 * | −0.18 ** | −0.02 | 0.03 | ||||||||
VCI-3 | 0.69 ** | 0.51 ** | 0.40 ** | 0.13 * | 0.04 | 0.04 | |||||||||
VCI-6 | 0.81 ** | 0.06 | 0.12 * | 0.11 * | 0.01 | ||||||||||
VCI-12 | −0.05 | −0.05 | −0.07 | −0.07 | |||||||||||
TCI-1 | −0.76 ** | −0.42 ** | −0.39 ** | ||||||||||||
TCI-3 | −0.72 ** | −0.49 ** | |||||||||||||
TCI-6 | −0.69 ** |
(a) | SPEI-1 | SPEI-3 | SPEI-6 | SPEI-12 |
Slope < 0 | 81.8 | 27.5 | 67.1 | 63.1 |
Slope > 0 | 18.2 | 72.5 | 32.9 | 36.9 |
SPI-1 | SPI-3 | SPI-6 | SPI-12 | |
Slope < 0 | 30.2 | 27.6 | 29.6 | 28.1 |
Slope > 0 | 69.8 | 72.4 | 70.4 | 71.9 |
VCI-1 | VCI-3 | VCI-6 | VCI-12 | |
Slope < 0 | 59.3 | 60.0 | 60.2 | 59.6 |
Slope > 0 | 40.7 | 40.0 | 39.8 | 40.4 |
TCI-1 | TCI-3 | TCI-6 | TCI-12 | |
Slope < 0 | 100.0 | 100.0 | 100.0 | 100.0 |
Slope > 0 | 0.0 | 0.0 | 0.0 | 0.0 |
(b) | SPEI-1 | SPEI-3 | SPEI-6 | SPEI-12 |
h < 0 | 0.0 | 0.0 | 0.0 | 0.0 |
h = 0 | 0.1 | 0.0 | 0.0 | 0.0 |
h > 0 | 99.9 | 100.0 | 84.9 | 0.0 |
h > 1 | 0.0 | 0.0 | 15.1 | 100.0 |
SPI-1 | SPI-3 | SPI-6 | SPI-12 | |
h < 0 | 8.8 | 0.0 | 0.0 | 0.0 |
h = 0 | 5.9 | 0.0 | 0.0 | 0.0 |
h > 0 | 85.3 | 100.0 | 83.6 | 0.0 |
h > 1 | 0.0 | 0.0 | 16.4 | 100.0 |
VCI-1 | VCI-3 | VCI-6 | VCI-12 | |
h < 0 | 18.9 | 5.8 | 0.0 | 0.0 |
h = 0 | 6.5 | 1.7 | 0.0 | 0.0 |
h > 0 | 74.6 | 92.5 | 78.5 | 0.0 |
h > 1 | 0.0 | 0.0 | 21.5 | 100.0 |
TCI-1 | TCI-3 | TCI-6 | TCI-12 | |
h < 0 | 45.2 | 9.6 | 0.0 | 0.0 |
h = 0 | 10.9 | 2.2 | 0.0 | 0.0 |
h > 0 | 43.9 | 88.3 | 97.7 | 0.0 |
h > 1 | 0.0 | 0.0 | 2.3 | 100.0 |
Variables | SPEI | SPI | VCI | TCI | Weights |
---|---|---|---|---|---|
SPEI | 1 | 2.0 | 3.0 | 5.0 | 46.9 |
SPI | 0.5 | 1 | 2.0 | 5.0 | 29.7 |
VCI | 0.3 | 0.5 | 1 | 3.0 | 16.6 |
TCI | 0.2 | 0.2 | 0.3 | 1 | 6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalisa, W.; Zhang, J.; Igbawua, T.; Kayiranga, A.; Ujoh, F.; Aondoakaa, I.S.; Tuyishime, P.; Li, S.; Simbi, C.H.; Nibagwire, D. Spatial Multi-Criterion Decision Making (SMDM) Drought Assessment and Sustainability over East Africa from 1982 to 2015. Remote Sens. 2021, 13, 5067. https://doi.org/10.3390/rs13245067
Kalisa W, Zhang J, Igbawua T, Kayiranga A, Ujoh F, Aondoakaa IS, Tuyishime P, Li S, Simbi CH, Nibagwire D. Spatial Multi-Criterion Decision Making (SMDM) Drought Assessment and Sustainability over East Africa from 1982 to 2015. Remote Sensing. 2021; 13(24):5067. https://doi.org/10.3390/rs13245067
Chicago/Turabian StyleKalisa, Wilson, Jiahua Zhang, Tertsea Igbawua, Alexis Kayiranga, Fanan Ujoh, Igbalumun Solomon Aondoakaa, Pacifique Tuyishime, Shuaishuai Li, Claudien Habimana Simbi, and Deborah Nibagwire. 2021. "Spatial Multi-Criterion Decision Making (SMDM) Drought Assessment and Sustainability over East Africa from 1982 to 2015" Remote Sensing 13, no. 24: 5067. https://doi.org/10.3390/rs13245067
APA StyleKalisa, W., Zhang, J., Igbawua, T., Kayiranga, A., Ujoh, F., Aondoakaa, I. S., Tuyishime, P., Li, S., Simbi, C. H., & Nibagwire, D. (2021). Spatial Multi-Criterion Decision Making (SMDM) Drought Assessment and Sustainability over East Africa from 1982 to 2015. Remote Sensing, 13(24), 5067. https://doi.org/10.3390/rs13245067