Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions
- NHL
- Latitudes above 50°N.In our analyses, we take the NHL as the land area above 50°N. The land area is defined according to the TransCom regions [29].
- NHL sites
- Observations stations above 49°N latitude.We also address NHL observation stations. We decided to include observation stations above 49°N latitude, a criterion differing from the NHL definitions because there are six stations near the Canadian-U.S. border below the 50°N latitudinal zone, which we wanted to include.
- Wintertime
- Time period when the soil is frozen.We use the term “wintertime” as the period when soil is frozen according to the SMOS F/T soil state. This is defined individually for each 1° × 1° (latitude × longitude) grid cell.
- Cold season
- November to April.To unify the wintertime results meaningfully, we defined the “cold season” based on the individual grid cells’ “wintertime”. We calculated the median freezing and thawing dates each year above the latitude 50°N and took the mean of the days. The median freezing day was November 6. and the median thawing day April 30. Thus, we defined the “cold season” as the time period from November to April.
2.2. The SMOS Soil Freeze/Thaw
2.3. CarbonTracker Europe-CH
2.4. Implementing the SMOS F/T Soil State to LPX-Bern DYPTOP Fluxes
3. Results
3.1. Defined Cold Season
3.2. Modified LPX Methane Emissions
3.3. Comparing Modelled and Observed Atmospheric Mole Fractions
3.4. Sites with Large Differences in Cold Season Bias and RMSE
3.5. The Impact of the SMOS F/T Implementation on Modelled Emissions
4. Discussion
4.1. Uncertainties in the SMOS F/T Soil State and Its Implementation
4.2. The Start and End of the Cold Season
4.3. Atmospheric Inversion and Methane Mole Fractions Estimates
4.4. Cold Season Methane Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NHL | Northern High Latitudes |
WSL | Western Siberian Lowlands (52–74°N, 60–94.5°E) |
HBL | Hudson Bay Lowlands (50–60°N, 75–96°W) |
SMOS | Soil Moisture and Ocean Salinity |
SMOS F/T | SMOS Freeze/Thaw soil state |
CTE-CH | CarbonTracker Europe-CH |
LPX | Methane emission estimates of LPX Bern DYPTOP v1.4 |
(a dynamic global vegetation and land surface process model) | |
LPX FT | LPX with the SMOS F/T implementation done in this study |
CTE | Methane emission (and concentration) estimates optimized with CTE-CH |
and LPX as the biospheric a priori | |
CTE FT | Methane emission (and concentration) estimates optimized with CTE-CH |
and LPX FT as the biospheric a priori |
References
- Hugelius, G.; Loisel, J.; Chadburn, S.; Jackson, R.B.; Jones, M.; MacDonald, G.; Marushchak, M.; Olefeldt, D.; Packalen, M.; Siewert, M.B.; et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Breon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Chapter 8; pp. 659–740. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Bohn, T.J.; Melton, J.R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B.D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M.V.; et al. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia. Biogeosciences 2015, 12, 3321–3349. [Google Scholar] [CrossRef] [Green Version]
- Koffi, E.N.; Bergamaschi, P.; Alkama, R.; Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 2020, 6, eaay4444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Voigt, C.; Marushchak, M.E.; Mastepanov, M.; Lamprecht, R.E.; Christensen, T.R.; Dorodnikov, M.; Jackowicz-Korczyński, M.; Lindgren, A.; Lohila, A.; Nykänen, H.; et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Glob. Chang. Biol. 2019, 25, 1746–1764. [Google Scholar] [CrossRef] [Green Version]
- Knoblauch, C.; Beer, C.; Liebner, S.; Grigoriev, M.N.; Pfeiffer, E.M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 2018, 8, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Rinne, J.; Tuittila, E.S.; Peltola, O.; Li, X.; Raivonen, M.; Alekseychik, P.; Haapanala, S.; Pihlatie, M.; Aurela, M.; Mammarella, I.; et al. Temporal Variation of Ecosystem Scale Methane Emission from a Boreal Fen in Relation to Temperature, Water Table Position, and Carbon Dioxide Fluxes. Glob. Biogeochem. Cycles 2018, 32, 1087–1106. [Google Scholar] [CrossRef]
- Aselmann, I.; Crutzen, P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 1989, 8, 307–358. [Google Scholar] [CrossRef]
- Treat, C.C.; Bloom, A.A.; Marushchak, M.E. Nongrowing season methane emissions—A significant component of annual emissions across northern ecosystems. Glob. Chang. Biol. 2018, 24, 3331–3343. [Google Scholar] [CrossRef] [Green Version]
- Peltola, O.; Vesala, T.; Gao, Y.; Räty, O.; Alekseychik, P.; Aurela, M.; Chojnicki, B.; Desai, A.R.; Dolman, A.J.; Euskirchen, E.S.; et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 2019, 11, 1263–1289. [Google Scholar] [CrossRef] [Green Version]
- Zona, D.; Gioli, B.; Commane, R.; Lindaas, J.; Wofsy, S.C.; Miller, C.E.; Dinardo, S.J.; Dengel, S.; Sweeney, C.; Karion, A.; et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl. Acad. Sci. USA 2016, 113, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Mastepanov, M.; Sigsgaard, C.; Tagesson, T.; Ström, L.; Tamstorf, M.P.; Lund, M.; Christensen, T.R. Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences 2013, 10, 5139–5158. [Google Scholar] [CrossRef] [Green Version]
- Raz-Yaseef, N.; Torn, M.S.; Wu, Y.; Billesbach, D.P.; Liljedahl, A.K.; Kneafsey, T.J.; Romanovsky, V.E.; Cook, D.R.; Wullschleger, S.D. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophys. Res. Lett. 2017, 44, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Tokida, T.; Mizoguchi, M.; Miyazaki, T.; Kagemoto, A.; Nagata, O.; Hatano, R. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 2007, 70, 165–171. [Google Scholar] [CrossRef]
- Burke, E.J.; Zhang, Y.; Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 2020, 14, 3155–3174. [Google Scholar] [CrossRef]
- Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L.H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A.D.; Hauck, C.; et al. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. Cryosphere 2015, 9, 1343–1361. [Google Scholar] [CrossRef] [Green Version]
- Guimberteau, M.; Zhu, D.; Maignan, F.; Huang, Y.; Yue, C.; Dantec-Nédélec, S.; Ottlé, C.; Jornet-Puig, A.; Bastos, A.; Laurent, P.; et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: Model description and validation. Geosci. Model Dev. 2018, 11, 121–163. [Google Scholar] [CrossRef] [Green Version]
- Chadburn, S.E.; Burke, E.J.; Essery, R.L.H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P.M.; Friedlingstein, P. Impact of model developments on present and future simulations of permafrost in a global land-surface model. Cryosphere 2015, 9, 1505–1521. [Google Scholar] [CrossRef] [Green Version]
- Porada, P.; Ekici, A.; Beer, C. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere 2016, 10, 2291–2315. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, K.; Parkkinen, T.; Lemmetyinen, J.; Schwank, M.; Wiesmann, A.; Ikonen, J.; Derksen, C.; Davydov, S.; Davydova, A.; Boike, J.; et al. SMOS prototype algorithm for detecting autumn soil freezing. Remote Sens. Environ. 2016, 180, 346–360. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS L: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, K.; Lemmetyinen, J.; Schwank, M.; Kontu, A.; Ménard, C.B.; Mätzler, C.; Drusch, M.; Wiesmann, A.; Ikonen, J.; Pulliainen, J. Detection of soil freezing from L-band passive microwave observations. Remote Sens. Environ. 2014, 147, 206–218. [Google Scholar] [CrossRef]
- Lienert, S.; Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 2018, 15, 2909–2930. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, A.; Aalto, T.; Backman, L.; Hakkarainen, J.; van der Laan-Luijkx, I.T.; Krol, M.C.; Spahni, R.; Houweling, S.; Laine, M.; Dlugokencky, E.; et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 2017, 10, 1261–1289. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, A.; Aalto, T.; Backman, L.; Krol, M.C.; Peters, W.; Lienert, S.; Joos, F.; Miller, P.A.; Zhang, W.; Laurila, T.; et al. Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system. Tellus B Chem. Phys. Meteorol. 2019, 71, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS Int. J. Geo-Inf. 2012, 1, 32–45. [Google Scholar] [CrossRef] [Green Version]
- ESA SMOS Dissemination Server. Available online: https://smos-diss.eo.esa.int/ (accessed on 10 December 2021).
- SMOS Level 3 Soil Freeze/Thaw Service. Available online: https://nsdc.fmi.fi/services/SMOSService/ (accessed on 10 December 2021).
- Kim, Y.; Kimball, J.S.; Glassy, J.; Du, J. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing. Earth Syst. Sci. Data 2017, 9, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Helfrich, S.R.; McNamara, D.; Ramsay, B.H.; Baldwin, T.; Kasheta, T. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process. 2007, 21, 1576–1586. [Google Scholar] [CrossRef]
- Van Der Laan-Luijkx, I.T.; Van Der Velde, I.R.; Van Der Veen, E.; Tsuruta, A.; Stanislawska, K.; Babenhauserheide, A.; Fang Zhang, H.; Liu, Y.; He, W.; Chen, H.; et al. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: Implementation and global carbon balance 2001–2015. Geosci. Model Dev. 2017, 10, 2785–2800. [Google Scholar] [CrossRef] [Green Version]
- Peters, W.; Miller, J.B.; Whitaker, J.; Denning, A.S.; Hirsch, A.; Krol, M.C.; Zupanski, D.; Bruhwiler, L.; Tans, P.P. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. Atmos. 2005, 110, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Krol, M.; Houweling, S.; Bregman, B.; van den Broek, M.; Segers, A.; van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P.; Broek, M.V.D.; et al. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 2005, 5, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, A.; Aalto, T.; Backman, L.; Peters, W.; Krol, M.; Laan-luijkx, I.T.V.D.; Hatakka, J.; Heikkinen, P.; Dlugokencky, E.J.; Spahni, R.; et al. Evaluating atmospheric methane inversion model results for Pallas, northern Finland. Boreal Environ. Res. 2015, 20, 506–525. [Google Scholar]
- Houweling, S.; Krol, M.; Bergamaschi, P.; Frankenberg, C.; Dlugokencky, E.J.; Morino, I.; Notholt, J.; Sherlock, V.; Wunch, D.; Beck, V.; et al. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos. Chem. Phys. 2014, 14, 3991–4012. [Google Scholar] [CrossRef] [Green Version]
- Brühl, C.; Crutzen, P.J. MPIC Two-Dimensional Model; Technical Report; NASA: Washington, DC, USA, 1993.
- NOAA Earth System Research Laboratory, Global Monitoring Laboratory. ObsPack v2.0: Cooperative Global Atmospheric Data Integration Project; Multi-Laboratory Compilation of Atmospheric Methane Data for the Period 1957–2018; obspack_CH4_1_GLOBALVIEWplus_v2.0 _2020-04-24; NOAA Earth System Research Laboratory, Global Monitoring Laboratory: Boulder, CO, USA, 2020. [CrossRef]
- World Data Center for Greenhouse Gases (WDCGG). Available online: https://gaw.kishou.go.jp (accessed on 10 December 2021).
- Bruhwiler, L.; Dlugokencky, E.; Masarie, K.; Ishizawa, M.; Andrews, A.; Miller, J.; Sweeney, C.; Tans, P.; Worthy, D. CarbonTracker-CH4: An assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 2014, 14, 8269–8293. [Google Scholar] [CrossRef] [Green Version]
- Stocker, B.D.; Spahni, R.; Joos, F. DYPTOP: A cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev. 2014, 7, 3089–3110. [Google Scholar] [CrossRef] [Green Version]
- Spahni, R.; Joos, F.; Stocker, B.D.; Steinacher, M.; Yu, Z.C. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: From the Last Glacial Maximum to the 21st century. Clim. Past 2013, 9, 1287–1308. [Google Scholar] [CrossRef] [Green Version]
- Spahni, R.; Wania, R.; Neef, L.; Van Weele, M.; Pison, I.; Bousquet, P.; Frankenberg, C.; Foster, P.N.; Joos, F.; Prentice, I.C.; et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 2011, 8, 1643–1665. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.; Osborn, T.; Lister, D. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- EDGAR v5.0 Global Greenhouse Gas Emissions. Available online: https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG (accessed on 10 December 2021).
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Inatomi, M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 2012, 9, 759–773. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Ferrians, O.; Heginbottom, J.; Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2; National Snow and Ice Data Center (NSIDC): Boulder, CO, USA, 2002. [Google Scholar]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Oliva, R.; Daganzo, E.; Richaume, P.; Kerr, Y.; Cabot, F.; Soldo, Y.; Anterrieu, E.; Reul, N.; Gutierrez, A.; Barbosa, J.; et al. Status of Radio Frequency Interference (RFI) in the 1400–1427 MHz passive band based on six years of SMOS mission. Remote Sens. Environ. 2016, 180, 64–75. [Google Scholar] [CrossRef]
- Wania, R.; Ross, I.; Prentice, I.C. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef] [Green Version]
- Meirink, J.F.; Bergamaschi, P.; Krol, M.C. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: Method and comparison with synthesis inversion. Atmos. Chem. Phys. 2008, 8, 6341–6353. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Sasakawa, M.; Machida, T.; Aalto, T.; Worthy, D.; Lavric, J.V.; Lund Myhre, C.; Stohl, A. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 2017, 17, 3553–3572. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Stohl, A. FLEXINVERT: An atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid. Geosci. Model Dev. 2014, 7, 2223–2242. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Maksyutov, S.; Tsuruta, A.; Janardanan, R.; Ito, A.; Sasakawa, M.; Machida, T.; Morino, I.; Yoshida, Y.; Kaiser, J.; et al. Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories. Remote Sens. 2019, 11, 2489. [Google Scholar] [CrossRef] [Green Version]
Sitecode | Site Name | Country | Contributor | Longitude | Latitude | Height * | Obs. Unc. | Data Type | Date min. ** | Date max. |
---|---|---|---|---|---|---|---|---|---|---|
(°E) | (°N) | (m a.s.l.) | (ppb) | (D/C) | (Year/Month) | (Year/Month) | ||||
ABT | Abbotsford, | Canada | Environment and Climate | −122.34 | 49.01 | 93 | 30.0 | C | 2014/03 | 2018/12 |
British Columbia | Change Canada (ECCC) | |||||||||
ALT | Alert, Nunavut | Canada | NOAA/GML | −62.51 | 82.45 | 195 | 15.0 | D | 1998/01 | 2018/12 |
ALT | Alert, Nunavut | Canada | ECCC | −62.51 | 82.45 | 210 | 15.0 | C | 1998/01 | 2018/12 |
AZV | Azovo | Russian Federation | NIES | 73.03 | 54.71 | 190 | 30.0 | C | 2009/10 | 2017/12 |
BAL | Baltic Sea | Poland | NOAA/GML | 17.22 | 55.35 | 28 | 75.0 | D | 1998/01 | 2011/06 |
BAR | Baranova | Russian Federation | FMI | 101.62 | 79.28 | 30 | 4.5 | C | 2015/11 | 2019/12 |
BCK | Behchoko, | Canada | ECCC | −115.92 | 62.80 | 220 | 15.0 | C | 2010/10 | 2018/12 |
Northwest Territories | ||||||||||
BIR | Birkenes | Norway | Norwegian Institute for | 8.25 | 58.39 | 219 | 25.0 | C | 2009/05 | 2018/12 |
Air Research (NILU) | ||||||||||
BLK | Baker Lake, Nunavut | Canada | ECCC | −96.01 | 64.33 | 61 | 15.0 | C | 2017/07 | 2018/12 |
BRA | Bratt’s Lake | Canada | ECCC | −104.71 | 50.20 | 630 | 75.0 | C | 2009/10 | 2018/12 |
Saskatchewan | ||||||||||
BRW | Barrow Atmospheric | United States | NOAA/GML | −156.61 | 71.32 | 27.5 | 15.0 | C | 1998/01 | 2018/12 |
Baseline Observatory | ||||||||||
BRW | Barrow Atmospheric | United States | NOAA/GML | −156.61 | 71.32 | 16.0, 11.0, | 15.0 | D | 1998/01 | 2018/12 |
Baseline Observatory | 13.0, 27.5 | |||||||||
CBA | Cold Bay, Alaska | United States | NOAA/GML | −162.72 | 55.21 | 57.04, 25.0 | 15.0 | D | 1998/01 | 2018/12 |
CBW | Cabaw | Netherlands | Netherlands Organisation for Applied | 4.93 | 51.97 | 199 | 15.0 | C | 2005/01 | 2013/06 |
Scientific Research (TNO) | ||||||||||
CBY | Cambridge Bay, | Canada | ECCC | −105.06 | 69.13 | 47 | 15.0 | C | 2012/12 | 2018/12 |
Nunavut Territory | ||||||||||
CHL | Churchill, Manitoba | Canada | ECCC | −93.82 | 58.74 | 89 | 15.0 | C | 2011/10 | 2018/12 |
CHM | Chibougamau, Quebec | Canada | ECCC | −74.34 | 49.69 | 423 | 30.0 | C | 2007/08 | 2011/04 |
CHS | Cherskii | Russian Federation | NOAA/GML | 161.53 | 68.51 | 64.4 | 25.0 | C | 2008/07 | 2016/01 |
CPS | Chapais, Quebec | Canada | ECCC | −74.98 | 49.82 | 386.0, 399.0, | 15.0 | C | 2011/12 | 2018/12 |
431.0 | ||||||||||
DEM | Demyanskoe | Russian Federation | NIES | 70.87 | 59.79 | 155 | 30.0 | C | 2005/09 | 2017/12 |
ESP | Estevan Point, | Canada | ECCC | −126.54 | 49.38 | 47 | 25.0 | C | 2009/03 | 2018/12 |
British Columbia | ||||||||||
EST | Esther, Alberta | Canada | ECCC | −110.21 | 51.67 | 710.0, 757.0 | 30.0 | C | 2010/01 | 2018/12 |
ETL | East Trout Lake, | Canada | ECCC | −104.99 | 54.35 | 598 | 30.0 | C | 2005/08 | 2018/12 |
Saskatchewan | ||||||||||
FNE | Fort Nelson, | Canada | ECCC | −122.57 | 58.84 | 376 | 30.0 | C | 2014/07 | 2018/12 |
British Columbia | ||||||||||
FSD | Fraserdale | Canada | ECCC | −81.57 | 49.88 | 250 | 30.0 | C | 1999/01 | 2018/12 |
GAT | Gartow | Germany | ICOS-ATC, HPB | 11.44 | 53.07 | 411 | 25.0 | C | 2016/05 | 2018/12 |
HTM | Hyltemossa | Sweden | ICOS-ATC, LUND-CEC | 13.42 | 56.10 | 265 | 25.0 | C | 2017/04 | 2018/12 |
ICE | Storhofdi, | Iceland | NOAA/GML | −20.29 | 63.40 | 121.7, 127.0 | 15.0 | D | 1998/01 | 2018/12 |
Vestmannaeyjar | ||||||||||
IGR | Igrim | Russian Federation | NIES | 64.41 | 63.19 | 89 | 30.0 | C | 2005/04 | 2013/07 |
INU | Inuvik, | Canada | ECCC | −133.53 | 68.32 | 123 | 15.0 | C | 2012/02 | 2018/12 |
Northwest Territories | ||||||||||
KJN | Kjolnes | Norway | University of Exeter | 29.23 | 70.85 | 20 | 15.0 | C | 2013/10 | 2019/04 |
KMP | Kumpula | Finland | FMI | 24.96 | 60.20 | 53 | 30.0 | C | 2010/01 | 2019/12 |
KRE | Kresin u Pacova | Czech Republic | ICOS-ATC, CAS | 15.08 | 49.58 | 784 | 25.0 | C | 2017/04 | 2018/12 |
KRS | Karasevoe | Russian Federation | NIES | 82.42 | 58.25 | 156 | 30.0 | C | 2004/09 | 2017/12 |
LEB | Lethbridge | Canada | ECCC | −112.80 | 49.73 | 25 | 30.0 | C | 2016/10 | 2018/03 |
LIN | Lindenberg | Germany | ICOS-ATC, HPB | 14.12 | 52.17 | 171 | 30.0 | C | 2015/10 | 2018/12 |
LLB | Lac La Biche, Alberta | Canada | NOAA/GML | −112.47 | 54.95 | 588.0, 546.1 | 30.0 | D | 2008/01 | 2013/02 |
LLB | Lac La Biche, Alberta | Canada | ECCC | −112.47 | 54.95 | 550.0, 590.0 | 30.0 | C | 2007/04 | 2018/12 |
LUT | Lutjewad | Netherlands | ICOS-ATC, RUG | 6.35 | 53.40 | 61 | 25.0 | C | 2018/08 | 2018/12 |
MHD | Mace Head, | Ireland | NOAA/GML | −9.90 | 53.33 | 26 | 25.0 | D | 1998/01 | 2018/12 |
County Galway | ||||||||||
MHD | Mace Head | Ireland | Laboratoire des Sciences du Climat | −9.90 | 53.33 | 29 | 25.0 | C | 2010/01 | 2018/04 |
et de l’Environnement (LSCE) | ||||||||||
NGL | Neuglobsow | Germany | Umweltbundesamt Germany/Federal | 13.03 | 53.17 | 68.4 | 75.0 | C | 1999/01 | 2013/12 |
Environmental Agency (UBA-Germany) | ||||||||||
NOR | Norunda | Sweden | ICOS-ATC, LUND-CEC | 17.48 | 60.09 | 146 | 15.0 | C | 2017/04 | 2018/12 |
NOY | Noyabrsk | Russian Federation | NIES | 75.78 | 63.43 | 188 | 30.0 | C | 2005/10 | 2017/12 |
OXK | Ochsenkopf | Germany | NOAA/GML | 11.81 | 50.03 | 1172.0, | 30.0 | D | 2003/03 | 2018/12 |
1185.0 | ||||||||||
PAL | Pallas-Sammaltunturi, | Finland | NOAA/GML | 24.12 | 67.97 | 570 | 15.0 | D | 2001/12 | 2018/12 |
GAW Station | ||||||||||
PAL | Pallas-Sammaltunturi, | Finland | FMI | 24.12 | 67.97 | 570 | 15.0 | C | 2004/02 | 2017/12 |
GAW Station | ||||||||||
PAL | Pallas-Sammaltunturi, | Finland | ICOS-ATC, FMI | 24.12 | 67.97 | 577 | 15.0 | C | 2017/09 | 2018/12 |
GAW Station | ||||||||||
PUI | Puijo | Finland | FMI | 27.66 | 62.91 | 84 | 30.0 | C | 2011/11 | 2019/12 |
RGL | Ridge Hill | United Kingdom | University of Urbino | −2.54 | 52.00 | 294 | 25.0 | C | 2012/02 | 2017/12 |
SHM | Shemya Island, Alaska | United States | NOAA/GML | 174.13 | 52.71 | 28 | 25.0 | D | 1998/01 | 2018/10 |
SMR | Hyytiala | Finland | ICOS-ATC, UHELS | 24.29 | 61.85 | 306 | 25.0 | C | 2016/12 | 2018/12 |
SOD | Sodankylä | Finland | FMI | 26.64 | 67.36 | 227 | 25.0 | C | 2012/01 | 2019/12 |
SUM | Summit | Greenland | NOAA/GML | −38.42 | 72.60 | 3214.5 | 15.0 | D | 1998/01 | 2018/12 |
SVB | Svartberget | Sweden | ICOS-ATC, SLU | 19.78 | 64.26 | 385 | 25.0 | C | 2017/06 | 2018/12 |
TAC | Tacolneston | United Kingdom | NOAA/GML | 1.14 | 52.52 | 236 | 25.0 | D | 2014/06 | 2016/01 |
TAC | Tacolneston | United Kingdom | University of Bristol | 1.14 | 52.52 | 241 | 25.0 | C | 2013/01 | 2017/12 |
TER | Teriberka | Russian Federation | Main Geophysical Observatory (MGO) | 35.10 | 69.20 | 42 | 15.0 | D | 1999/01 | 2019/12 |
TIK | Hydrometeorological | Russian Federation | NOAA/GML | 128.89 | 71.60 | 29 | 15.0 | D | 2011/08 | 2018/09 |
Observatory of Tiksi | ||||||||||
TIK | Tiksi | Russian Federation | FMI | 128.89 | 71.60 | 29 | 15.0 | C | 2010/09 | 2019/12 |
TOH | Torfhaus | Germany | ICOS-ATC, HPB | 10.54 | 51.81 | 948 | 25.0 | C | 2017/12 | 2018/12 |
UTO | Uto | Finland | ICOS-ATC, FMI | 21.37 | 59.78 | 65 | 25.0 | C | 2018/03 | 2018/12 |
VGN | Vaganovo | Russian Federation | NIES | 62.32 | 54.50 | 277 | 30.0 | C | 2008/06 | 2017/12 |
YAK | Yakutsk | Russian Federation | NIES | 129.36 | 62.09 | 344 | 30.0 | C | 2007/09 | 2013/12 |
ZEP | Ny-Alesund, Svalbard | Norway and Sweden | NOAA/GML | 11.89 | 78.91 | 479 | 15.0 | D | 1998/01 | 2018/12 |
ZEP | Ny-Alesund, Svalbard | Norway and Sweden | ICOS-ATC, NILU | 11.89 | 78.91 | 489 | 15.0 | C | 2017/07 | 2018/12 |
ZOT | Zottino | Russian Federation | MPI | 89.21 | 60.48 | 415 | 25.0 | C | 2009/05 | 2016/12 |
ZOT | Zottino | Russian Federation | MPI | 89.21 | 60.48 | 415 | 15.0 | D | 2006/10 | 2013/06 |
Annual Biospheric CH Emissions | Global | NHL | WSL | HBL |
---|---|---|---|---|
LPX FT (Tg/year) | 123 ± 41 | 16.7 ± 5.2 | 4.2 ± 3.3 | 2.3 ± 1.2 |
CTE FT (Tg/year) | 126 ± 40 | 23.1 ± 4.0 | 6.6 ± 2.5 | 2.8 ± 1.0 |
Diff CTE−CTE FT (LPX−LPX FT) (Tg/year) | 0.75 (0.84) | 0.64 (0.80) | 0.19 (0.27) | 0.10 (0.12) |
Ratio diff/CTE FT (diff/LPX FT) (%) | 0.60 (0.69) | 2.8 (4.8) | 2.8 (6.4) | 3.4 (5.3) |
Cold Season Biospheric CHEmissions | NHL | WSL | HBL | |
LPX FT (Tg/season) | 3.2 ± 0.9 | 0.73 ± 0.5 | 0.32 ± 0.2 | |
CTE FT (Tg/season) | 3.5 ± 0.8 | 0.84 ± 0.4 | 0.27 ± 0.2 | |
Diff CTE−CTE FT (LPX−LPX FT) (Tg/season) | 0.60 (0.72) | 0.20 (0.26) | 0.11 (0.13) | |
Ratio diff/CTE FT (diff/LPX FT) (%) | 17.1 (22.6) | 23.2 (35.8) | 38.5 (40.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenkanen, M.; Tsuruta, A.; Rautiainen, K.; Kangasaho, V.; Ellul, R.; Aalto, T. Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes. Remote Sens. 2021, 13, 5059. https://doi.org/10.3390/rs13245059
Tenkanen M, Tsuruta A, Rautiainen K, Kangasaho V, Ellul R, Aalto T. Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes. Remote Sensing. 2021; 13(24):5059. https://doi.org/10.3390/rs13245059
Chicago/Turabian StyleTenkanen, Maria, Aki Tsuruta, Kimmo Rautiainen, Vilma Kangasaho, Raymond Ellul, and Tuula Aalto. 2021. "Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes" Remote Sensing 13, no. 24: 5059. https://doi.org/10.3390/rs13245059
APA StyleTenkanen, M., Tsuruta, A., Rautiainen, K., Kangasaho, V., Ellul, R., & Aalto, T. (2021). Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes. Remote Sensing, 13(24), 5059. https://doi.org/10.3390/rs13245059