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Abstract: We present a global 0.1◦ × 0.1◦ high-resolution inverse model, NIES-TM-FLEXPART-VAR
(NTFVAR), and a methane emission evaluation using the Greenhouse Gas Observing Satellite (GOSAT)
satellite and ground-based observations from 2010–2012. Prior fluxes contained two variants of
anthropogenic emissions, Emissions Database for Global Atmospheric Research (EDGAR) v4.3.2 and
adjusted EDGAR v4.3.2 which were scaled to match the country totals by national reports to the United
Nations Framework Convention on Climate Change (UNFCCC), augmented by biomass burning
emissions from Global Fire Assimilation System (GFASv1.2) and wetlands Vegetation Integrative
Simulator for Trace Gases (VISIT). The ratio of the UNFCCC-adjusted global anthropogenic emissions
to EDGAR is 98%. This varies by region: 200% in Russia, 84% in China, and 62% in India. By changing
prior emissions from EDGAR to UNFCCC-adjusted values, the optimized total emissions increased
from 36.2 to 46 Tg CH4 yr−1 for Russia, 12.8 to 14.3 Tg CH4 yr−1 for temperate South America, and 43.2
to 44.9 Tg CH4 yr−1 for contiguous USA, and the values decrease from 54 to 51.3 Tg CH4 yr−1 for
China, 26.2 to 25.5 Tg CH4 yr−1 for Europe, and by 12.4 Tg CH4 yr−1 for India. The use of the national
report to scale EDGAR emissions allows more detailed statistical data and country-specific emission
factors to be gathered in place compared to those available for EDGAR inventory. This serves policy
needs by evaluating the national or regional emission totals reported to the UNFCCC.

Keywords: methane emissions; NTFVAR; GOSAT; EDGARv4.3.2; UNFCCC reports

1. Introduction

The average global atmospheric methane concentration had reached 1867 ppb by the end of the year
2018 and is rising faster than at any time in the past two decades, while the carbon dioxide (CO2) increase
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is slowing down [1–3]. Methane (CH4) plays a growing role in anthropogenic climate change with its
share of more than 20% of the total greenhouse gas (GHG) concentration [4–6]. Reducing methane
emissions would make a significant contribution to climate change mitigation on a shorter time scale,
due to its relatively short lifetime compared with that of CO2 [7,8]. The determination of national
emission reduction targets and policies is directly affected by the amount of methane emissions
produced by individual countries [9]. However, studies on emission estimates suggest that there are
still large uncertainties in methane budgets, and more effort should be made to better quantify the
methane emissions [10–15]. Still, it is challenging to verify the accuracy of methane emissions on
a country scale. The national reports submitted to the United Nations Framework Convention on
Climate Change (UNFCCC) by different countries might use different methods to estimate emissions,
which could be different from global inventory datasets produced by the scientific community, such as
the Global Carbon Project (GCP) [16], and the Emissions Database for Global Atmospheric Research
(EDGAR) [17–19]. Complementary to these bottom-up emission estimations, top-down estimations
by inverse models combined with atmospheric measurements have been widely used and have
proven worthy for emission inventory evaluation (e.g., [20–26]). Houweling et al. [27] reviewed the
development of global inverse modeling of methane, and Jacob et al. [28] also supported their research
by presenting the advantages of increased observational data from surface stations, satellites and
aircraft, and state-of-the-art computational facilities. The inverse model has become more important
for allowing better quantification of methane emissions.

Studies have shown an extension of regional Lagrangian inverse modelling to global scale
inverse modeling based on a combination of the 3D global Eulerian models and the Lagrangian
models (e.g., [29,30]). They have demonstrated an enhanced capability of the transport resolving high
resolution surface emission patterns using inverse modeling schemes relying on regional and global
basis flux patterns. The disadvantage of using regional basis functions in inverse modeling has been
addressed by developing grid-based inversion schemes that use variational assimilation algorithms
(e.g., [22,31–33]). To implement a grid-based inversion scheme suitable for optimizing surface fluxes at
the high resolution of the Lagrangian model, an adjoint of a coupled Eulerian–Lagrangian model is
needed. Maksyutov et al. [34] developed the global 0.1◦ × 0.1◦ high spatial resolution inverse model
NIES-TM-FLEXPART-VAR (NTFVAR), which provides an extension of the high resolution regional
inverse modeling approaches [22,31–33] on a global scale. The NTFVAR model is a grid-based inversion
scheme that is suitable for optimizing surface fluxes at high resolution, providing the capability to use
high-resolution regional transport with global mass conservation and consistency of the estimated
regional fluxes with global concentration trends. This paper presents the estimation of global and
regional methane emissions using the NTFVAR inverse modeling system with two sets of emission
inventories that differ in anthropogenic emissions—one with anthropogenic emissions from EDGAR
v4.3.2 and the other with anthropogenic emissions from EDGAR v4.3.2 scaled to UNFCCC national
reports [35].

2. Materials and Methods

2.1. Inverse Modeling System—NTFVAR

2.1.1. The Transport Model

We used a global Eulerian–Lagrangian coupled model NIES-TM-FLEXPART-VAR (NTFVAR)
that consists of the National Institute for Environmental Studies (NIES) model as a Eulerian
three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model)
as the Lagrangian Particle Dispersion Model (LPDM). The forward transport model and model
development were described by Ganshin et al. [36] and Belikov et al. [30], and the application to
inverse modeling using the Kalman smoother at moderate resolution of 1◦ × 1◦ was demonstrated
by Zhuravlev et al. [37], Ishizawa et al. [38], and Shirai et al. [29]. Our transport model is a further
modification of the model described by Belikov et al. [30]. The coupled model combines National
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Institute for Environmental Studies Transport Model (NIES-TM) v08.1i with a horizontal resolution of
2.5◦ and 32 hybrid-isentropic vertical levels [39] and Flexpart model v.8.0 [40], and runs in backward
mode with a surface flux resolution of 0.1◦. The changes in the current version with respect to the
study by Belikov et al. [30] include the derivation of adjoint components using the adjoint code
compiler Tapenade [41] instead of the TAF (Transformation of Algorithms in Fortran) compiler [42].
Additionally, the transport matrix indexing and sorting algorithms were revised to allow efficient
memory usage for handling large matrixes of Lagrangian responses to surface fluxes required for the
application of the model to satellite data. A manually- derived adjoint of the NIES TM v08.1i was
used, as in Belikov et al. [30], due to its computational efficiency. The second-order approximation Van
Leer algorithm [43] was implemented in the adjoint and forward models, alternatively to the third
order algorithm typically used in forward models [39]. The meteorological data used for the transport
model were obtained from the Japanese Meteorological Agency (JMA) Climate Data Assimilation
System (JCDAS) [44,45], which provided the required parameters, such as three-dimensional wind
fields, temperature, and humidity at 1.25◦ × 1.25◦ spatial resolution, 40 vertical hybrid sigma-pressure
levels, and a temporal resolution of 6 h.

2.1.2. The Inverse Modeling Scheme

The same inversion scheme with high resolution (0.1◦ × 0.1◦) fluxes and variational optimization
was applied to estimate CO2 fluxes by Maksyutov et al. [34], who also demonstrated its capability
to capture the observed atmospheric CO2 time series. In this study, the high-resolution variant
of the transport model and its adjoint described by Belikov et al. [30] were combined with the
optimization scheme proposed by Meirink et al. [46] and Basu et al. [47]. Following the approach
by Meirink et al. [46], flux corrections were estimated independently for two categories of emissions
(anthropogenic and natural). Variational optimization was applied to obtain flux corrections as two
sets of scaling factors to vary prior uncertainty fields on a monthly basis at a 0.1◦ × 0.1◦ resolution
separately for anthropogenic and natural wetland emissions with bi-weekly time steps. Anthropogenic
emission corrections were proportional to the monthly climatology emissions provided by EDGAR,
and the wetland emission corrections were proportional to the monthly climatology wetland emissions
provided by the Vegetation Integrative Simulator for Trace Gases (VISIT) model (details of prior fluxes
given in Section 2.2), with both given as prior uncertainty fields. The grid scale flux uncertainty was
defined as 30% of the EDGAR climatology for the anthropogenic flux category and 50% of the VISIT
climatological emissions for the wetland emissions category. Other flux categories, such as biomass
burning, geological, termites, and soil sink, were not corrected by inversion. The spatial correlation
of 500 km and temporal correlation of two weeks were used to provide smoothness constraints
on the resulting fields of the scaling factors. The inverse modeling problem was formulated (e.g.,
Tarantola [48], Meirink et al. [46]) and solved to find the optimal value of x—vectors of corrections to
prior fluxes at the minimum of the cost function J(x):

J(x) =
1
2
(H·x− r)T

·R−1
·(H·x− r) +

1
2

xT
·B−1
·x (1)

where r is the residual (difference between the observed concentration and the forward simulation
made with prior fluxes without correction), R is the covariance matrix of observations, and B is the
covariance matrix of fluxes. In our design of matrix B, we follow Meirink et al. [46] in representing
matrix B as a multiple of the non-dimensional covariance matrix C and the diagonal flux uncertainty D
as B = DT

·C·D. Matrix C is commonly implemented as the band matrix with non-diagonal elements
declining as ∼ exp

(
−x2/l2

)
with the distance x between the grid cells. To achieve computational

efficiency for the flux covariance operator, the implicit diffusion technique was used to implement
a spatial covariance matrix, as in Weaver and Courtier’s study [48]. To construct symmetric matrix
C, we first implemented the square root of C by implicit diffusion and constructed the adjoint of it
by applying an adjoint code compiler, Tapenade, to the Fortran code of modules approximating the
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square root of C. The temporal covariance matrixes were of low dimension and were designed as in
Meirink et al., 2008 by deriving the square root of the Gaussian-shaped time covariance matrix with
direct Singular Value Decomposition (SVD) [49]. The optimal solution was calculated as the minimum
of the cost function J. This was done iteratively with the efficient Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, as implemented by Gilbert and Lemarechal [50]. We limited the number of iterations
to 40, as cost function reduction slows down by the time that this number is reached.

2.2. Prior Fluxes and Observations

Prior methane fluxes used in the coupled model included anthropogenic emissions,
biospheric emissions of wetlands, soil sinks, emissions from biomass burning, and other natural
sources from the ocean, geological sources, and termites. EDGAR provides an annually gridded
anthropogenic emission dataset that is available at a resolution of 0.1◦ × 0.1◦ [19]. The seasonal cycle
was found to have effects on the top-down emission estimation [33]. In this study, monthly variation
of anthropogenic emissions was prepared based on the climatology data issued by EDGAR for 2010.
The ratio of monthly emissions to annual emissions was calculated for each grid. Then, for other
years, the grid value for each month was calculated proportionally to the annual grid emission of
the corresponding year. The VISIT model simulations for wetlands (Cao mechanism [51]) and soil
sink (Curry mechanism [52]) are available at 0.5◦ [53]. For simulations in this study, we updated the
data by remapping the wetland emissions from 0.5◦ to 0.1◦ using the Global Lakes and Wetlands
Database (GLWD) wetland area map at a resolution of 30 arcseconds [54], while soil sink data were
remapped to a resolution of 0.1◦ using the gross primary productivity (GPP) maps by the MODIS
MOD17 GPP product [55]. For emissions from biomass burning, daily Global Fire Assimilation System
(GFASv1.2) [56] data were used. The oceanic, geological, and termite emissions were taken from Patra
et al. [57].

The total column-averaged dry-air mole fraction (XCH4) retrieved from the Greenhouse Gas
Observing Satellite (GOSAT) (NIES Level 2 retrievals, v. 02.72) from 2010–2012 was used to constrain
methane emissions. The vertical sensitivity of the GOSAT observations given by the column averaging
kernel [58] was examined using 2010–2012 simulations. The root-mean-square error (RMSE) of the
total methane flux was 4.5 Tg CH4 yr−1, or 0.82% of the mean total flux, and the retrieval-averaging
kernel of GOSAT retrievals was not applied in this study.

In addition to the GOSAT retrievals, ground-based atmospheric methane observations from global
surface sites, aircrafts, and ship tracks were used in the inversions (see Appendix A). The data contained
weekly and continuous samples. The continuous observations were analyzed at the hourly scale, which
was further averaged to daily means using 12:00–16:00 LT (except for mountain sites, where 0:00–4:00
LT was used). Where sampling flags were available, we pre-filtered the continuous weekly and
hourly observations by selecting those with well-mixed conditions. Data uncertainty, used as the
diagonal of R in Equation (1), included both the observation uncertainty (e.g., measurement error and
spatial representativeness) and the transport model error. For the ground-based sites, data uncertainty
was defined based on the average RMSE between the observations and prior atmospheric CH4

generated by the NTFVAR model with the prior emissions (original EDGAR plus natural sources)
for each site. The minimum uncertainty was set to 6 ppb in order to allow more freedom for the
inversion in the southern hemisphere. Note that we did not apply any temporal variations to the
data uncertainty. The rejection threshold of the ground-based sites was set to two times the data
uncertainty. The data uncertainty for the GOSAT retrieval was set to 60 ppb with a rejection threshold
of 30 ppb. Large data uncertainty was applied to the GOSAT retrievals, because the amount of GOSAT
data is generally much larger than that of ground-based observations and using an insufficient data
uncertainty may result in over-fitting the GOSAT data, although the measurement precision is higher
for ground-based observations.
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2.3. Flux Estimation Uncertainties

Estimation uncertainties were simulated by randomly perturbing the observations and the prior
fluxes following the method described by Chevallier et al. [59]. We perturbed five sets of observations
consistently with the observation uncertainty at each site and produced five sets of perturbed monthly
EDGAR and VISIT fluxes with a random scaling factor applied separately for each GCP region
and each month. The perturbation amplitude for the regional scaling factor was limited by the
uncertainty scale described in Section 2.2. We then performed an inversion using the perturbed
pseudo-observations as measurement data and the perturbed fluxes (perturbed EDGAR and VISIT
combined with the non-perturbed soil sink, biomass burning, and other natural emissions from the
ocean, geological sources, and termites) as the prior fluxes and compared the inversion results to get
the standard deviation of the estimated emissions.

2.4. Adjusting Prior Anthropogenic Emissions to National Reports

EDGAR is a widely used, gridded emission inventory, and the UNFCCC reports only include
the total annual emissions for each country. Annex I countries submit complete inventories of GHG
emission sources and sinks from the base year (1990), and other countries are encouraged to submit
their GHG inventories as part of their National Communications and Biennial Update Reports (BUR).
To date, 150 countries have submitted one or more national communications with a summary of the
GHG inventory. We compared the total CH4 emissions with land use, land-use change, and forestry
(LULUCF) sectors in UNFCCC reports (units: Gg) with the latest EDGAR v4.3.2 emission inventory
which extended the emissions to 2012. The top fifteen emitting countries based on the EDGAR estimate
for 2012 and other countries, including Germany, France, the United Kingdom, and Japan, were
selected to adjust the inventory according to the UNFCCC reports. The countries selected are shown in
Table 1, and these nineteen countries emit 66% of the total global methane emissions according to the
values estimated by EDGAR v4.3.2 for the year 2012.

Table 1. The selected countries with high emissions and their methane emissions estimated by the
Emissions Database for Global Atmospheric Research (EDGAR) v4.3.2 in 2012 and the United Nations
Framework Convention on Climate Change (UNFCCC) in 2012 or the latest report by several non-Annex
I countries (year in brackets).

Country
Name China India United

States Brazil Russian
Federation Indonesia Nigeria Pakistan Iran Mexico

EDGAR (Gg) 66,297 32,582 25,770 19,212 17,441 12,027 7252 7213 6528 5201
UNFCCC

(Gg) 55,914 19,776
(2010) 27,099 16,808 33,894 11,257

(2000)
4207

(2000)
2890

(1994)
3606

(2000) 4558

Country
Name Australia Thailand Bangladesh Canada Argentina Germany France United

Kingdom Japan

EDGAR
(Gg) 4987 4893 4808 4679 4562 2768 2651 2624 1850

UNFCCC
(Gg) 4550 3171

(1994)
1191

(1994) 3939 3900 2340 2420 2424 1317

The new gridded emission inventory based on the UNFCCC reports was produced by scaling the
annual total value to the EDGAR estimation using Equation (2):

EUNFCCC(t) = EEDGARv4.3.2(t) ×
1
n

∑n

k=1

(
EUNFCCC(i)

EEDGARv4.3.2(i)

)
(2)

where t is the year (2010, 2011, or 2012); n is the number of reports to the UNFCCC by the top emitting
countries listed in Table 1; and i is the recent four reporting years, from 2009 to 2012.

For the remaining countries, EUNFCCC(t) = EEDGARv4.3.2(t).
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3. Results and Discussion

3.1. Comparison of EDGAR v4.3.2 and UNFCCC Reports

We compared the annual total methane emissions from national reports of the UNFCCC and
EDGAR for the top emitting countries (Figure 1). The global anthropogenic methane emissions stayed
stable from 1990 to 2000 and increased again at the start of the 21st century [60]. The main sources of
methane, the production and transmission of coal, oil and natural gas, livestock, waste, and wastewater,
along which coal mining, livestock, and natural gas production and distribution have contributed
the most to the increase in the last ten years [19]. Countries with the largest absolute increases over
these ten years were China, India, Brazil, and Indonesia, whereas the largest decreases occurred in the
European Union, Russian Federation, Nigeria, and Ukraine [59].
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Figure 1. Comparison of anthropogenic methane emissions (units: Tg CH4 yr−1) between national
reports to the UNFCCC and EDGAR v4.3.2 (G1: group 1, G2: group 2, and G3: group 3). The top
emitting countries (based on the amount of emissions in the year 2012) are presented.

We divided countries into three groups according to the ratio of the UNFCCC-reported emissions
to those by EDGAR. In the first group, G1, shown in Figure 1, Russia reported 1.7 to 2-fold of the
EDGAR estimates. Some part of this increase might be due to accidental methane release, which is not
included in EDGAR and is not a negligible methane source in Russia [61]. The differences reported
by most countries in the second group, G2, were within 20%. The United States of America (USA)
reported within 10% more than EDGAR estimate. China reported 66.3 Tg in the year 2012, which is
16% lower than the EDGAR estimate. France and the United Kingdom reported lower but within 10%
of the EDGAR estimates and Germany reported 17% less than the EDGAR estimate. In the third group,
G3, Japan and India reported 60%~70% of the EDGAR estimate, while Bangladesh and Iran updated
their last reports in 2005 and 2000, estimating less than 50% of the EDGAR estimates.

3.2. Estimation of Global Methane Emissions

The analysis in this study was based on bi-weekly emissions estimated for the years 2010–2012 using
the inverse modeling system with variational optimization to two categories of fluxes: anthropogenic
and natural (wetlands). Monthly emissions were calculated and analyzed for two sets of simulations:
S0 simulation with EDGAR v4.3.2 and S1 simulation with EDGAR scaled to UNFCCC reports.

The global total anthropogenic emissions estimated by EDGAR were 347 Tg CH4 yr−1 (average
2010–2012) while EDGAR adjusted to UNFCCC reports gave 338 Tg CH4 yr−1 (98% of EDGAR).
The global total natural emissions from wetlands and biomass burning were 204 Tg CH4 yr−1.
The global total prior methane emissions were 557 Tg CH4 yr−1 for S0 and 548 Tg CH4 yr−1 for S1. The
optimized global anthrophonic emissions were 350 Tg CH4 yr−1 and 344 Tg CH4 yr−1 for S0 and S1,
respectively. The optimized global total methane emissions were 572 Tg CH4 yr−1 and 566 Tg CH4 yr−1

for S0 and S1, respectively. The differences between the total methane emissions reduced from the prior
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values after inversion. Those results are slightly higher than the previous estimation of 548+21
−22 Tg CH4

yr−1 reported by Kirschke et al. [14] and the Intergovernmental Panel on Climate Change (IPCC) [62].
Figure 2 shows the average monthly global total and anthropogenic prior and estimated emissions.

The inverse model produced lower emissions in winter compared with prior emissions and enhanced
emissions in summer. Case S0 showed a more pronounced summer peak compared to case S1.
The summer maximum appeared in July–August with its larger share of emissions from natural sources
(e.g., wetlands, biomass burning, and lakes) and the agriculture sector [63] when minimum CH4

concentrations were recorded in most places of the northern hemisphere due to the larger CH4 sink as
a result of the strong chemical reaction with OH in the warm season [64]. Significant differences were
found between the prior and posterior fluxes in winter and summer. Since seasonal cycle separation
depends on latitude and the average time period, Figure 2a shows the average for three entire years and
the whole region for both prior and posterior fluxes. Figure 2b shows the monthly variation of wetland
emissions and anthropogenic emissions in selected regions including boreal America, the contiguous
USA, Europe, Russia, and China in the northern hemisphere, where the wetland emissions were low in
winter and the difference between prior and posterior anthropogenic emissions was more independent
from wetland emission uncertainties.
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3.3. Estimation of Regional Methane Emissions

3.3.1. Total Regional Emissions

Regional methane emissions for fourteen regions are shown in Figure 3. These regions were
described by Saunois et al. [10] and modified in our study by combining Taiwan with China (removing
it from central Eurasia and Japan).
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The inverse model-estimated corrections of total emissions were found to vary among regions,
with the most significant changes taking place in Russia and India. The total methane emissions
optimized by inversion for Russia increased by 27% from 36.2 to 46 Tg CH4 yr−1 when the prior
anthropogenic emissions were adjusted from EDGAR to UNFCCC values (cases S0 to S1), and the
inversion adjusted the emissions downwards. The reduction in the total prior methane emissions for
India was 29%, and the posterior emissions decreased from 44.8 to 32.5 Tg CH4 yr−1 from case S0 to S1.
Temperate South America showed 12% higher posterior emissions (from 12.8 to 14.3 Tg CH4 yr−1) and
boreal North America increased by 6% (from 21.4 to 22.7 Tg CH4 yr−1), while the estimates for central
North America decreased by 6% (from 11.2 to 10.5 Tg CH4 yr−1). The differences in the optimized
total methane emissions for contiguous USA, Oceania, Southern Africa, Southeast Asia, and Europe
were less than 3% between case S0 and S1. The optimized total methane emissions of contiguous USA
slightly increased from 42.9 to 43.4 Tg CH4 yr−1 by implementing the UNFCCC scale but were still
lower than the estimation by Miller et al. [23] (47.2 Tg CH4 yr−1) and Turner et al. [23] (52.4 Tg CH4

yr−1). The optimized total methane emissions for Europe decreased from 26.2 to 25.5 Tg CH4 yr−1,
and these values were 6%–7% higher compared with the prior fluxes in both cases. The results are
in line with the estimation (26.8 Tg CH4 yr−1) from the multi-model experiment for the EU-28 for
2006–2012 [65]. For boreal North America and China, the inverse model lowered the total methane
emissions in both cases. The optimized total methane emissions for China decreased from 53.7 to
50.5 Tg CH4 yr−1, which is higher than the total methane emissions of China estimated as 38.6 Tg CH4

yr−1 in 2007 by Zhang et al. [66]. Other inverse modeling studies have also inferred smaller emissions
than the EDGAR estimate for China [14,67].

3.3.2. Regional Anthropogenic Emissions

The anthropogenic methane emissions in the 14 regions are shown in Figure 4. China is the biggest
emitter, reporting a 16% lower value than the UNFCCC in 2012 than the estimation of the EDGAR
inventory. Our inverse modeling results are more in line with the UNFCCC reports, which reduced the
estimates from 48 (S0) to 44 (S1) Tg CH4 yr−1, which is very similar to the estimation by Peng et al. [15]
with 44.9 Tg CH4 yr−1 in 2010. In India, the inverse model optimized the UNFCCC emissions upwards
by 25% reaching 25 Tg CH4 yr−1. This estimate is higher than that reported by Ganesan et al. [33]
(22 Tg CH4 yr−1). Europe reported lower anthropogenic emissions by about 10% with the UNFCCC
value compared with the EDGAR estimation, but the optimized estimates were 24.5 and 23.9 Tg CH4

yr−1—6% and 8% higher than prior emissions for cases S0 and S1, respectively. The most distinct
changes were found for Russia, where the prior anthropogenic methane emissions almost doubled
from 17 to 33 Tg CH4 yr−1 by implementing UNFCCC scales, and the posterior emissions also increased
from 19.6 to 32 Tg CH4 yr−1. The inversion-optimized results suggest that reports to the UNFCCC
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by Russia may overestimate the emissions while EDGAR may underestimate them. To some extent,
our estimates of the anthropogenic emissions are influenced by natural emissions, as local concentration
increases can be attributed both to natural and anthropogenic sources. Better separation between
these emission categories is achieved when source regions with dominant anthropogenic and natural
emissions are geographically separated as they are in the USA, Western Europe, or China. The notable
advantage of high-resolution simulations, which are useful for separating between emission categories,
are their ability to reproduce high concentration methane plumes of anthropogenic origin significantly
exceeding the signals of natural wetland emissions. Another factor contributing to separating the
sources is the difference in seasonality of anthropogenic and wetland emissions (Section 3.3.1), e.g.,
low wetland emissions in extratropical winter.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 16 

 

 
Figure 3. Regional total methane emissions (unit Tg CH4 yr−1) in 2010–2012 for cases S0 and S1. Error 
bars are the posterior uncertainties. 

3.3.2. Regional Anthropogenic Emissions  

The anthropogenic methane emissions in the 14 regions are shown in Figure 4. China is the 
biggest emitter, reporting a 16% lower value than the UNFCCC in 2012 than the estimation of the 
EDGAR inventory. Our inverse modeling results are more in line with the UNFCCC reports, which 
reduced the estimates from 48 (S0) to 44 (S1) Tg CH4 yr−1, which is very similar to the estimation by 
Peng et al. [15] with 44.9 Tg CH4 yr−1 in 2010. In India, the inverse model optimized the UNFCCC 
emissions upwards by 25% reaching 25 Tg CH4 yr−1. This estimate is higher than that reported by 
Ganesan et al. [33] (22 Tg CH4 yr−1). Europe reported lower anthropogenic emissions by about 10% 
with the UNFCCC value compared with the EDGAR estimation, but the optimized estimates were 
24.5 and 23.9 Tg CH4 yr−1—6% and 8% higher than prior emissions for cases S0 and S1, respectively. 
The most distinct changes were found for Russia, where the prior anthropogenic methane emissions 
almost doubled from 17 to 33 Tg CH4 yr−1 by implementing UNFCCC scales, and the posterior 
emissions also increased from 19.6 to 32 Tg CH4 yr−1. The inversion-optimized results suggest that 
reports to the UNFCCC by Russia may overestimate the emissions while EDGAR may underestimate 
them. To some extent, our estimates of the anthropogenic emissions are influenced by natural 
emissions, as local concentration increases can be attributed both to natural and anthropogenic 
sources. Better separation between these emission categories is achieved when source regions with 
dominant anthropogenic and natural emissions are geographically separated as they are in the USA, 
Western Europe, or China. The notable advantage of high-resolution simulations, which are useful 
for separating between emission categories, are their ability to reproduce high concentration methane 
plumes of anthropogenic origin significantly exceeding the signals of natural wetland emissions. 
Another factor contributing to separating the sources is the difference in seasonality of anthropogenic 
and wetland emissions (section 3.3.1), e.g., low wetland emissions in extratropical winter. 

 
Figure 4. Regional anthropogenic methane emissions (unit Tg CH4 yr−1) in 2010–2012 for cases S0 and
S1. The error bars are the estimation uncertainties.

3.4. Spatial Patterns of the Flux Corrections

The anthropogenic posterior fluxes for 2010–2012 and the flux correction scales for cases with
prior emissions of EDGAR (S0) and EDGAR scaled to UNFCCC reports (S1) are presented in Figure 5.
The optimized anthropogenic emissions are represented by the ratios of anthropogenic corrections
(CORRan) to multi-annual average EDGAR emissions defined in Equation (3):

scalean = CORRan/EDGAR2008−2012 . (3)
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Figure 5. Posterior anthropogenic methane fluxes (S0 (a) and S1 (c)) and scaling factors (S0 (b) and S1
(d)). (2010–2012 average, unit mg CH4 m−2 day−1).

The two optimized flux maps (2010–2012 average) for cases S0 and S1 are not distinguishable in
Figure 5a,c showing large emissions in Southeast Asia, while the scaling factor maps illustrate evident
differences. Figure 5b depicts obvious anthropogenic emission increases in northern Europe, Russia,
and boreal America, and a larger area of decrease in east China for case S0. The scaling factor of case
S1 shown in Figure 5d illustrates a relatively smaller decrease in China compared with that shown for
S0, and a slight decrease in Russia. Case S1 shows a larger increase in the scaling factor over India
compared that shown for S0, which is likely to be caused by lower prior emissions in case S1.

The average natural posterior fluxes for the years 2010–2012 and the scaling factors are presented
in Figure 6. The optimized fluxes are represented by the ratios of wetland flux corrections (CORRw) to
the multi-annual mean VISIT prior emissions defined in Equation (4):

scalew = CORRw/VISIT2008−2013 (4)

where scalew is the wetland emission scaling factor. The prior natural emissions from the VISIT emission
inventory are shown to be the same for both cases (S0 and S1). The scaling factors are used to illustrate
the optimization of fluxes. Figure 6d shows a greater increase in the Amazon area and greater decreases
in Siberia and boreal America for case S1 compared with those shown in Figure 6b for case S0. It is
shown that lower wetland emissions are required in Siberia with higher anthropogenic prior emissions
for Russia in the S1 case.
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3.5. Modeled Concentrations Versus Observations

The inversion results were evaluated by comparing the modeled concentrations to observations
of ground-based stations and GOSAT values shown in Table 2. Three years of observation, from 2010
to 2012, were used in each simulation, and the model outputted the forward concentrations (simulated
with prior fluxes) and optimized concentrations (simulated with posterior fluxes). The bias (model
minus observation data mismatch) and the root-mean-square error (RMSE) were calculated for cases
S0 and S1. The bias was defined as the average mismatch between the observations and model (model
minus observations) throughout the observation period. The RMSE was an aggregated form of the
residuals (the difference between observed values and simulated values). Improvement of model
simulation for reproducing the observations was found when changing the prior emissions from case
S0 to S1. Table 2 shows that the mean RMSE decreased from prior to posterior emissions in both cases,
and the optimized RMSE for GOSAT data was lower for the S1 case. RMSE was improved by flux
optimization by almost half for both ground-based and GOSAT data. Additionally, the mean RMSEs
and bias decreased from S0 to S1 for ground-based data.

Table 2. Mean bias and the root-mean-square error (RMSE) for cases S0 and S1.

Case Number of
Observations Bias (ppb) RMSE (ppb)

S0-prior ground 89,059 −6.49 45.19
S0-posterior ground 76,772 −4.61 26.62

S1-prior ground 89,059 −5.17 44.80
S1-posterior ground 76,481 −4.24 26.40

S0-prior GOSAT 329,483 −12.30 24.39

S0-posterior GOSAT 272,101 −5.29 12.26

S1-prior GOSAT 329,483 −14.56 24.14

S1-posterior GOSAT 254,657 5.59 8.93
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The time series of atmospheric methane concentrations at selected stations for case S1 is shown in
Figure 7, including the global background in the South-West Pacific (MLO: Mauna Loa), the regional
European background (PAL: Pallas), a European mountain station in Switzerland (JFJ: Jungfraujoch),
and a station influenced by anthropogenic emissions in Asia (RYO: Ryori). The optimized emissions
induced better reproduction of the methane concentrations with lower RMSE values at each site.
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sites in 2010. Mean bias and root-mean-square error (RMSE) values for each site are shown. (JFJ: 7.99E,
46.55N; MLO: 155.58W, 19.54N; PAL: 24.07E, 67.58N; and RYO: 144.32E, 39.03N).

4. Conclusions

In this paper, we have presented a comparison of the methane bottom-up emission inventories
with inversion estimates using the global 0.1◦ × 0.1◦ high-resolution model NIES-TM-FLEXPART-VAR.
The use of high-resolution transport helps to reduce biases in transport and inversion caused by the
broadening of the anthropogenic emission plumes due to crude model resolution and numerical
diffusion. EDGAR v4.3.2 provided methane emission values until 2012, and some differences in country
totals can be found compared to the national reports to the UNFCCC, e.g., an underestimation
of emissions by EDGAR in Russia by 50% and an overestimation by 20–40% for China and
India. High resolution global inversion was employed to evaluate the effect of improved prior
information using national reports with more detailed statistical data and country-specific emission
factors. The original EDGAR v4.3.2 and the UNFCCC-adjusted emissions were used as two sets
of anthropogenic prior emissions (for cases S0 and S1 respectively) together with biomass burning
(GFASv1.2), wetlands (VISIT), and other natural sources. With the prior anthropogenic emissions
adjusted from EDGAR to the UNFCCC, the total methane emissions optimized by inversion increased
from 36.2 to 46 Tg CH4 yr−1 (27%) for Russia and 12.8 to 14.3 Tg CH4 yr−1 (12%) for temperate South
America, and they decreased from 44.8 to 32.5 Tg CH4 yr−1 (28%) for India and 54 to 51.3 Tg CH4 yr−1

(5%) for China. The inverse corrections of total methane emissions also varied by region—upward
by ~18% (of the total) for tropical South America for both S0 and S1 cases, and downward by 22%
and 15% for boreal North America, and 22% and 14% for China for both S0 and S1 cases, respectively.
The most insignificant corrections occurred in central Eurasia and Japan (<2% for both cases). The ratios
between the average flux (2010–2012) and the multi-annual average EDGAR and VISIT fluxes were also
analyzed. Case S0 showed an apparent increase in anthropogenic emissions in central Europe, Russia,
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and contiguous USA, and a larger area of decrease in east China compared with case S1. The natural
emissions shown for case S1 showed a greater increase in the Amazon area and decreases in Siberia and
boreal North America compared to those shown for case S0. The inversions were also evaluated by the
comparison between modeled concentrations and observations. The advantage of using the national
reports to scale EDGAR emissions was supported by achieving a better fit for both the forward and
optimized model simulations to the observations with our model setup. The country scale top-down
emissions should be further evaluated and advanced to provide support for the improvement of the
national reports to UNFCCC.
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Appendix A

Table A1. List of Atmospheric Methane Observation Sites.

Obs.ID Lab. Latitude (deg. N) Longitude (deg.
E) Altitude (m.a.s.l.) Station

Type
Sampling

Type 1
Uncertainty

(ppm)

abb006 ECCC 49.03 −122.3 93 Station C 0.060
abp001 NOAA −12.77 −38.17 6 Station D 0.010
alt006 ECCC 82.45 −62.51 210 Station C 0.019
alt001 NOAA 82.45 −62.51 195 Station D 0.019

ams011 LSCE −37.80 77.54 70, 75 Station D/C 0.010
amt001 NOAA 45.03 −68.68 157, 160 Station D 0.100
amy061 KMA 36.53 126.32 86 Station C 0.063
aoa019 JMA 24.23–34.43 141.04–154.02 200–8100 Aircraft D 0.021
arh015 NIWA −77.80 166.67 189 Station D 0.010
asc001 NOAA −7.97 −14.40 90 Station D 0.010
ask001 NOAA 23.26 5.63 2715 Station D 0.013
ato045 MPI-BGC −2.15 −59.01 209 Station C 0.030
azr001 NOAA 38.77 −27.38 24 Station D 0.021

azv NIES 54.71 73.03 150 Station C 0.050
bal001 NOAA 55.35 17.22 28 Station D 0.038
bao001 NOAA 40.05 −105.00 1884 Station D 0.100
beh006 ECCC 62.80 −117.55 220 Station C 0.020
bgu011 LSCE 41.97 3.23 15 Station D 0.018
bhd001 NOAA −41.41 174.87 90 Station D 0.010
bis011 LSCE 44.38 −1.23 167 Station C 0.060
bkt105 EMPA −0.20 100.32 877 Station C 0.022
bkt001 NOAA −0.20 100.32 875 Station D 0.022
bme001 NOAA 32.37 −64.65 17 Station D 0.020
bmw001 NOAA 32.27 −64.88 60 Station D 0.015

brl006 ECCC 50.20 −104.71 630 Station C 0.100
brw001 NOAA 71.32 −156.61 16, 27.5 Station D 0.022

brz NIES 56.15 84.33 230 Station C 0.067
bsc001 NOAA 44.18 28.66 5 Station D 0.046
bsl015 NIWA −29.99–33.43 135.07–167.55 30 Ship D 0.032
cab006 ECCC 69.11 −105.14 47 Station C 0.020
cba001 NOAA 55.21 −162.72 57 Station D 0.017
cbw196 RUG 51.97 4.93 199 Station C 0.060
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Table A1. Cont.

Obs.ID Lab. Latitude (deg. N) Longitude (deg.
E) Altitude (m.a.s.l.) Station

Type
Sampling

Type 1
Uncertainty

(ppm)

cfa002 CSIRO −19.28 147.06 5 Station D 0.010
cgo001 NOAA −40.68 144.69 164 Station D 0.019
cgo043 AGAGE −40.68 144.68 94 Station C 0.019
cha006 ECCC 49.82 −74.97 431 Station C 0.020
chi006 ECCC 49.68 −74.34 423 Station C 0.035
chr001 NOAA 1.70 −157.15 5 Station D 0.020
chs001 NOAA 68.51 161.53 64.4 Station D 0.025
chu006 ECCC 58.75 −94.07 89 Station C 0.030
cib001 NOAA 41.81 −4.93 850 Station D 0.020

cmn106 UNIURB/ISAC 44.18 10.70 2172 Station D 0.020
coi020 NIES 43.16 145.50 94 Station C 0.027
cpt036 SAWS −34.35 18.49 260 Station C 0.010
cpt001 NOAA −34.35 18.49 260 Station D 0.010
cri002 CSIRO 15.08 73.83 66 Station D 0.036
crz001 NOAA −46.43 51.85 202 Station D 0.010
cya002 CSIRO −66.28 110.52 55 Station D 0.010
dem020 NIES 59.79 70.87 138 Station C 0.068
dow006 ECCC 43.74 −79.47 218 Station C 0.100
drp001 NOAA −65.02–58.85 −65.73–58.65 10 Ship D 0.010
dsi001 NOAA 20.70 116.73 8 Station D 0.020
egb006 ECCC 44.23 −79.78 276 Station C 0.042
eic001 NOAA −27.15 −109.45 55, 69, 72 Station D 0.010

eom010 MRI −15.00–39.16 −177.00–178.00 3788–13106 Aircraft D 0.024
esp006 ECCC 49.38 −126.54 47 Station C 0.015
est006 ECCC 51.67 −110.21 757 Station C 0.080
etl006 ECCC 54.35 −104.99 598 Station C 0.052
fik011 LSCE 35.34 25.67 150, 152 Station D 0.032
fsd006 ECCC 49.88 −81.57 250 Station C 0.033
gif011 LSCE 48.71 2.15 167 Station C 0.030
glh209 UMIT 36.07 14.22 167 Station C 0.020
gmi001 NOAA 13.39 144.66 5, 8 Station D 0.023
gpa002 CSIRO −12.25 131.04 37 Station D 0.020

gsn NIER 33.17 126.10 82, 144 Station C 0.060
hat020 NIES 24.06 123.81 47.3 Station C 0.032
hba001 NOAA −75.61 −26.21 35 Station D 0.010
hle011 LSCE 32.78 78.96 4517, 4522 Station D 0.020
hpb001 NOAA 47.80 11.02 990, 941 Station D 0.067
hun001 NOAA 46.95 16.65 344 Station D 0.056
ice001 NOAA 63.40 −20.29 127 Station D 0.020
igr020 NIES 63.19 64.42 72 Station C 0.139
inu006 ECCC 68.32 −133.53 123 Station C 0.020
izo001 NOAA 28.31 −16.50 2377.9 Station D 0.020
izo027 AEMET 28.30 −16.48 2360 Station C 0.020
jfj005 EMPA 46.55 7.99 3583 Station C 0.022

key001 NOAA 25.66 −80.16 6 Station D 0.024
kmw196 RIVM 53.33 6.28 0 Station C 0.100
krs020 NIES 58.25 82.42 117 Station C 0.056

kum001 NOAA 19.52 −154.82 8, 41.1 Station D 0.015
kzd001 NOAA 44.45 75.57 412, 600 Station D 0.038
kzm001 NOAA 43.25 77.86 2524 Station D 0.038
lau015 NIWA −45.03 169.67 380 Station D/C 0.010
lef001 NOAA 45.95 −90.27 868 Station D 0.070
llb006 ECCC 54.95 −112.45 588 Station C 0.092
llb001 NOAA 54.95 −112.45 546 Station D 0.092
lln001 NOAA 23.47 120.87 2867 Station D 0.029

lmp001 NOAA 35.52 12.62 50 Station D 0.025
lmp028 ENEA 35.52 12.62 45 Station D 0.025
lpo011 LSCE 48.80 −3.58 20 Station D 0.066
lto011 LSCE 6.22 −5.03 205 Station C 0.030

maa002 CSIRO −67.62 62.87 42 Station D 0.010
mex001 NOAA 18.98 −97.31 4469 Station D 0.021
mhd001 NOAA 53.33 −9.90 26 Station D 0.015
mhd043 AGAGE 53.33 −9.90 8 Station C 0.015
mid001 NOAA 28.21 −177.38 8, 16 Station D 0.016
mkn001 NOAA −0.06 37.30 3649 Station D 0.025
mlo001 NOAA 19.54 −155.58 3402, 3437 Station D/C 0.016

mnm019 JMA 24.30 153.97 8 Station C 0.016
mqa002 CSIRO −54.48 158.97 12 Station D 0.010
mwo001 NOAA 34.22 −118.06 1770.6, 1774 Station D 0.100
nat001 NOAA −5.51 −35.26 20, 87 Station D 0.015
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Table A1. Cont.

Obs.ID Lab. Latitude (deg. N) Longitude (deg.
E) Altitude (m.a.s.l.) Station

Type
Sampling

Type 1
Uncertainty

(ppm)

ngl025 UBA-Germany 53.17 13.03 68.4 Station C 0.047
nmb001 NOAA −23.58 15.03 461 Station D 0.010

nov004-070 NIES 55.00 83.00 400–7000 Aircraft D 0.013–0.096
noy NIES 63.43 75.78 143 Station C 0.017

nwr001 NOAA 40.05 −105.58 3526 Station D 0.017
ope011 LSCE 48.55 5.50 440, 510 Station D/C 0.100
ota002 CSIRO −38.52 142.82 50 Station D 0.020
oxk001 NOAA 50.03 11.81 1172, 1185 Station D 0.037
pal001 NOAA 67.97 24.12 570 Station D 0.022
pal030 FMI 67.97 24.12 567 Station C 0.022
pbl011 LSCE 11.65 92.76 20, 21 Station D 0.030

pdm011 LSCE 42.94 0.14 2877, 2887, 2905 Station D 0.034
pip008 TU 37.81 141.35 198–3813 Aircraft D 0.028

poc000-s35 NOAA −35.00–30.00 −179.00–178.43 20 Ship D 0.014
pon011 LSCE 12.01 79.86 20, 30 Station D 0.030
prs021 RSE 45.93 7.70 3490 Station C 0.018
psa001 NOAA −64.92 −64.00 15 Station D 0.010
pta001 NOAA 38.95 −123.74 22 Station D 0.020
puy011 LSCE 45.77 2.97 1465, 1475 Station D 0.044
rpb001 NOAA 13.16 −59.43 20 Station D 0.013
rpb043 AGAGE 13.17 −59.43 45 Station C 0.013
ryo019 JMA 39.03 141.83 260 Station C 0.026
sct001 NOAA 33.41 −81.83 420 Station D 0.100
sdz001 NOAA 40.65 117.12 298 Station D 0.098
sey001 NOAA −4.68 55.53 7 Station D 0.018
sgp001 NOAA 36.61 −97.49 374 Station D 0.060
shm001 NOAA 52.72 174.10 28 Station D 0.018
smo001 NOAA −14.25 −170.56 47, 60 Station D 0.010
smo043 AGAGE −14.24 −170.57 42 Station C 0.010
smr421 UHELS 61.51 24.17 306 Station C 0.030
snb211 EAA 47.05 12.95 3111 Station C 0.020
sod030 FMI 67.36 26.64 227 Station C 0.030
spo001 NOAA −89.98 −24.80 2815, 2821.3 Station D 0.010
ssl025 UBA-Germany 47.92 7.92 1205 Station C 0.045
str001 NOAA 37.76 −122.45 486 Station D 0.100

sum001 NOAA 72.60 −38.42 3214.5 Station D 0.015
sur005-070 NIES 61.00 73.00 500–7000 Aircraft D 0.015–0.070

syo001 NOAA −69.00 39.58 16, 19 Station D 0.010
tap001 NOAA 36.73 126.13 21 Station D 0.047
tda008 TU 33.26–38.10 130.47–141.23 3962–11278 Aircraft D 0.024
ter055 MGO 69.20 35.10 42 Station D 0.028
thd001 NOAA 41.05 −124.15 112 Station D 0.015
thd043 AGAGE 41.05 −124.15 120 Station C 0.015
tik001 MGO 71.60 128.89 29 Station D 0.030
tr3011 LSCE 47.96 2.11 311 Station D 0.100
tup006 ECCC 42.68 −80.33 266 Station C 0.020
ush001 NOAA −54.85 −68.31 32 Station D 0.010
uta001 NOAA 39.90 −113.72 1332 Station D 0.023
uto030 FMI 59.78 21.37 65 Station C 0.030

uum001 NOAA 44.45 111.10 1012 Station D 0.036
vgn NIES 54.50 62.33 285 Station C 0.058

wbi001 NOAA 41.73 −91.35 620 Station D 0.100
wgc001 NOAA 38.27 −121.49 91 Station D 0.120
wis001 NOAA 30.86 34.78 156, 482 Station D 0.028
wkt001 NOAA 31.32 −97.33 708 Station D 0.100
wlg001 NOAA 36.29 100.90 3815 Station D 0.023
wlg033 CMA/NOAA 36.28 100.90 3810 Station D 0.023
wpc001 NOAA −30.45–30.10 136.62–170.47 10 Ship D 0.010

wpsEQ0-S35 NIES −36.99–54.00 136.64–179.90 10 Ship D 0.010
wsa006 ECCC 43.93 −60.01 30 Station D/C 0.022

yak010-030 NIES 62.09 129.36 287, 1000–3000 Station/Aircraft C/D 0.015–0.042
yon019 JMA 24.47 123.02 30 Station C 0.032
zep001 NOAA 78.91 11.89 479 Station D 0.019
zot045 MPI-BGC 60.48 89.21 415 Station D/C 0.020
zsf025 UBA-Germany 47.42 10.98 2673.5 Station C 0.020

1 C: continuous measurement, D: discrete flask.
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