Algorithm for Improved Stereoscopic Cloud-Top Height Retrieval Based on Visible and Infrared Bands for Himawari-8 and FY-4A
Abstract
:1. Introduction
2. Data Description
2.1. Input Datasets
2.2. Inter-Comparison of Datasets
3. Prototype Dual-GEO CTH Algorithm
4. Improved Dual-GEO CTH Algorithm
4.1. Characteristics of VIS-Band-Based and IR-Band-Based Approaches
4.2. Seamless Image Cloning
5. Inter-Comparison between Operational CTH Products
5.1. Case 1: 27 February 2019
5.2. Case 2: 3 December 2018
5.3. Case 3: 10 January 2019
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, X.; Yi, L.; Bendix, J. Cloud top height retrieval over the Arctic Ocean using a cloud-shadow method based on MODIS. Atmos. Res. 2021, 253, 105468. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Coakley, J.A. Cloud retrieval using infrared sounder data: Error analysis. J. Appl. Meteorol. Climatol. 1981, 20, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Smith, W.L.; Stewart, T.R. Improved cloud motion wind vector and altitude assignment using VAS. J. Appl. Meteorol. Climatol. 1983, 22, 377–384. [Google Scholar] [CrossRef]
- Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.N.; Heidinger, A.; Joro, S.; Kniffka, A.; et al. Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmos. Meas. Tech. 2014, 7, 2839–2867. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CLOUDSAT Mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Im, E.; Wu, C.; Durden, S.L. Cloud profiling radar for the CloudSat mission. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 15–18. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos. 2008, 113, D00A18. [Google Scholar] [CrossRef]
- Muller, J.P.; Denis, M.A.; Dundas, R.D.; Mitchell, K.L.; Naud, C.; Mannstein, H. Stereo cloud-top heights and cloud fraction retrieval from ATSR-2. Int. J. Remote Sens. 2007, 28, 1921–1938. [Google Scholar] [CrossRef] [Green Version]
- Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites. Atmos. Chem. Phys. 2013, 13, 2589–2606. [Google Scholar] [CrossRef] [Green Version]
- Hasler, A.F. Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Am. Meteorol. Soc. 1981, 62, 194–212. [Google Scholar] [CrossRef] [Green Version]
- Hasler, A.F.; Strong, J.; Woodward, R.H.; Pierce, H. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure. J. Appl. Meteorol. Climatol. 1991, 30, 257–281. [Google Scholar] [CrossRef] [Green Version]
- Wylie, D.P.; Santek, D.; Starr, D.O.C. Cloud-top heights from GOES-8 and GOES-9 stereoscopic imagery. J. Appl. Meteorol. 1998, 37, 405–413. [Google Scholar] [CrossRef]
- Seiz, G.; Tjemkes, S.; Watts, P. Multiview cloud-top height and wind retrieval with photogrammetric methods: Application to Meteosat-8 HRV observations. J. Appl. Meteorol. Climatol. 2007, 46, 1182–1195. [Google Scholar] [CrossRef] [Green Version]
- Merucci, L.; Zakšek, K.; Carboni, E.; Corradini, S. Stereoscopic estimation of volcanic ash cloud-top height from two geostationary satellites. Remote Sens. 2016, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Shin, D.-B.; Chung, C.-Y.; Kim, J. A cloud top-height retrieval algorithm using simultaneous observations from the Himawari-8 and FY-2E satellites. Remote Sens. 2020, 12, 1953. [Google Scholar] [CrossRef]
- Carr, J.L.; Wu, D.L.; Daniels, J.; Friberg, M.D.; Bresky, W.; Madani, H. GEO–GEO stereo-tracking of atmospheric motion vectors (AMVs) from the geostationary ring. Remote Sens. 2020, 12, 3779. [Google Scholar] [CrossRef]
- Corradini, S.; Montopoli, M.; Guerrieri, L.; Ricci, M.; Scollo, S.; Merucci, L.; Marzano, F.S.; Pugnaghi, S.; Prestifilippo, M.; Ventress, L.J.; et al. A multi-sensor approach for volcanic ash cloud retrieval and eruption characterization: The 23 november 2013 Etna lava fountain. Remote Sens. 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.L.; Wu, D.L.; Wolfe, R.E.; Madani, H.; Lin, G.; Tan, B. Joint 3D-wind retrievals with stereoscopic views from MODIS and GOES. Remote Sens. 2019, 11, 2100. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J.; Turner, P.J. Cloud-top height determination using ATSR data. Remote Sens. Environ. 1997, 59, 1–13. [Google Scholar] [CrossRef]
- Moroney, C.; Davies, R.; Muller, J. Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1532–1540. [Google Scholar] [CrossRef]
- Nelson, D.L.; Garay, M.J.; Kahn, R.A.; Dunst, B.A. Stereoscopic height and wind retrievals for aerosol plumes with the MISR INteractive eXplorer (MINX). Remote Sens. 2013, 5, 4593–4628. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, T.H.; Kolmonen, P.; Rodríguez, E.; Sogacheva, L.; Sundström, A.M.; de Leeuw, G. Ash plume top height estimation using AATSR. Atmos. Meas. Tech. 2014, 7, 2437–2456. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.; Poulsen, C.A.; Thomas, G.E.; Muller, J.P. Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: Evaluation and application to AATSR. Atmos. Meas. Tech. 2016, 9, 909–928. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Ishida, T.; Takahashi, Y.; Kubota, H.; Perez, G.J.; Marciano, J.S. Determination of cloud-top height through three-dimensional cloud reconstruction using DIWATA-1 Data. Sci. Rep. 2020, 10, 7570. [Google Scholar] [CrossRef] [PubMed]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Ichii, K.; Higuchi, A.; Takenaka, H. Geolocation accuracy assessment of Himawari-8/AHI imagery for application to terrestrial monitoring. Remote Sens. 2020, 12, 1372. [Google Scholar] [CrossRef]
- Takenaka, H.; Sakashita, T.; Higuchi, A.; Nakajima, T. Geolocation correction for geostationary satellite observations by a phase-only correlation method using a visible channel. Remote Sens. 2020, 12, 2472. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Mace, G. Level 2 GEOPROF Product Process Description and Interface Control Document Algorithm Version 5.3; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2007; p. 44. [Google Scholar]
- Nakajima, T.Y.; Nakajma, T. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci. 1995, 52, 4043–4059. [Google Scholar] [CrossRef] [Green Version]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3229–3239. [Google Scholar] [CrossRef]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Zhuge, X.Y.; Zou, X.L.; Wang, Y. A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6111–6119. [Google Scholar] [CrossRef]
- Perez, P.; Gangnet, M.; Blake, A. Poisson image editing. ACM Trans. Graph. 2003, 22, 313–318. [Google Scholar] [CrossRef]
- Weisz, E.; Li, J.; Menzel, W.P.; Heidinger, A.K.; Kahn, B.H.; Liu, C.Y. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett. 2007, 34, L17811. [Google Scholar] [CrossRef]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Climatol. 2008, 47, 1175–1198. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Siems, S.; Manton, M.; Protat, A.; Majewski, L.; Nguyen, H. Evaluating Himawari-8 cloud products using shipborne and CALIPSO observations: Cloud-top height and cloud-top temperature. J. Atmos. Ocean. Technol. 2019, 36, 2327–2347. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Huo, J.; Lyu, D.R.; Wang, X. Assessment of FY-4A and Himawari-8 cloud top height retrieval through comparison with ground-based millimeter radar at sites in Tibet and Beijing. Adv. Atmos. Sci. 2021, 38, 1334–1350. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Wang, X. Reliability evaluation of the joint observation of cloud top height by FY-4A and Himawari-8. Remote Sens. 2021, 13, 3851. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, C.; Yao, B.; Min, M.; Letu, H.S.; Yin, Y.; Yung, Y.L. A multilayer cloud detection algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sens. Environ. 2019, 227, 1–11. [Google Scholar] [CrossRef]
- Teng, S.W.; Liu, C.; Zhang, Z.B.; Wang, Y.; Sohn, B.J.; Yung, Y.L. Retrieval of ice-over-water cloud microphysical and optical properties using passive radiometers. Geophys. Res. Lett. 2020, 47, e2020GL088941. [Google Scholar] [CrossRef]
Instrument | Product Name | Product Version | Variable Name |
---|---|---|---|
CALIOP (1) | CAL_LID_L2_05 kmCLay | 4.20 | Layer_Top_Altitude |
CPR (2) | 2B-GEOPROF | 5.0 | CPR_Cloud_Mask |
AHI (3) | L2CLP010 | 1.0 | CLTH |
Layer | Type | CALIOP | CPR | ||||
---|---|---|---|---|---|---|---|
MAE | MBE | RMSE | MAE | MBE | RMSE | ||
Total | AHI | 2.506 | −2.374 | 3.035 | 1.737 | −1.349 | 2.063 |
Prototype | 2.832 | −2.377 | 3.727 | 2.232 | −1.648 | 2.948 | |
Improved | 1.826 | −1.178 | 2.450 | 1.449 | −0.297 | 1.889 | |
Single-layer | AHI | 2.194 | −2.102 | 2.799 | 1.747 | −1.375 | 2.083 |
Prototype | 2.350 | −1.799 | 3.153 | 2.180 | −1.725 | 2.881 | |
Improved | 1.517 | −0.777 | 2.146 | 1.379 | −0.543 | 1.858 | |
Multi-layer | AHI | 2.830 | −2.657 | 3.262 | 1.721 | −1.308 | 2.032 |
Prototype | 3.332 | −2.977 | 4.241 | 2.312 | −1.532 | 3.046 | |
Improved | 2.146 | −1.593 | 2.730 | 1.556 | 0.078 | 1.935 |
Layer | Type | CALIOP | CPR | ||||
---|---|---|---|---|---|---|---|
MAE | MBE | RMSE | MAE | MBE | RMSE | ||
Total | AHI | 3.203 | −3.066 | 4.083 | 2.532 | −2.411 | 3.258 |
Prototype | 3.678 | −3.635 | 4.698 | 3.116 | −3.015 | 4.042 | |
Improved | 2.871 | −2.718 | 3.914 | 2.196 | −1.947 | 3.229 | |
Single-layer | AHI | 2.571 | −2.346 | 3.758 | 2.300 | −2.134 | 3.153 |
Prototype | 2.818 | −2.759 | 3.873 | 2.677 | −2.539 | 3.519 | |
Improved | 2.616 | −2.377 | 3.793 | 2.212 | −1.873 | 3.186 | |
Multi-layer | AHI | 3.985 | −3.958 | 4.453 | 3.173 | −3.173 | 3.529 |
Prototype | 4.743 | −4.719 | 5.552 | 4.329 | −4.329 | 5.222 | |
Improved | 3.186 | −3.140 | 4.059 | 2.154 | −2.150 | 3.342 |
Layer | Type | CALIOP | CPR | ||||
---|---|---|---|---|---|---|---|
MAE | MBE | RMSE | MAE | MBE | RMSE | ||
Total | AHI | 2.905 | −2.467 | 4.735 | 2.008 | −1.025 | 3.226 |
Prototype | 3.843 | −3.579 | 6.224 | 2.492 | −1.590 | 4.576 | |
Improved | 3.455 | −3.141 | 5.818 | 1.910 | −0.890 | 3.689 | |
Single-layer | AHI | 0.936 | −0.228 | 1.589 | 0.872 | 0.044 | 1.090 |
Prototype | 1.141 | −0.751 | 2.141 | 0.758 | 0.442 | 0.904 | |
Improved | 1.138 | −0.691 | 2.184 | 0.763 | 0.653 | 0.915 | |
Multi-layer | AHI | 5.187 | −5.063 | 6.744 | 3.371 | −2.307 | 4.633 |
Prototype | 6.974 | −6.857 | 8.850 | 4.572 | −4.027 | 6.715 | |
Improved | 6.142 | −5.981 | 8.218 | 3.286 | −2.742 | 5.379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-h.; Shin, D.-B. Algorithm for Improved Stereoscopic Cloud-Top Height Retrieval Based on Visible and Infrared Bands for Himawari-8 and FY-4A. Remote Sens. 2021, 13, 4993. https://doi.org/10.3390/rs13244993
Lee J-h, Shin D-B. Algorithm for Improved Stereoscopic Cloud-Top Height Retrieval Based on Visible and Infrared Bands for Himawari-8 and FY-4A. Remote Sensing. 2021; 13(24):4993. https://doi.org/10.3390/rs13244993
Chicago/Turabian StyleLee, Jong-hyuk, and Dong-Bin Shin. 2021. "Algorithm for Improved Stereoscopic Cloud-Top Height Retrieval Based on Visible and Infrared Bands for Himawari-8 and FY-4A" Remote Sensing 13, no. 24: 4993. https://doi.org/10.3390/rs13244993
APA StyleLee, J. -h., & Shin, D. -B. (2021). Algorithm for Improved Stereoscopic Cloud-Top Height Retrieval Based on Visible and Infrared Bands for Himawari-8 and FY-4A. Remote Sensing, 13(24), 4993. https://doi.org/10.3390/rs13244993