Remotely Sensed Tree Characterization in Urban Areas: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overview, Study Scale, and Geographic Distribution of Previous Research
3.2. Data Sources
3.2.1. LiDAR
3.2.2. Satellite Imagery
3.2.3. Aerial Imagery
3.2.4. Ground-Level Images and Videos
3.2.5. Combining Multiple Data Sources
3.3. Data Processing and Analytical Methods
3.3.1. Traditional Parametric Methods
3.3.2. Digital Image Processing
3.3.3. Machine Learning Algorithms
3.3.4. Deep Learning Methods
4. Challenges and Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Wilkes, P.; Disney, M.; Vicari, M.B.; Calders, K.; Burt, A. Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manag. 2018, 13, 10. [Google Scholar] [CrossRef]
- Chaparro, L.; Terrasdas, J. Ecological Services of Urban Forest in Barcelona. Shengtai Xuebao Acta Ecol. Sin. 2009, 29, 103. [Google Scholar] [CrossRef]
- Ciesielski, M.; Stereńczak, K. Accuracy of determining specific parameters of the urban forest using remote sensing. Iforest-Biogeosci. For. 2019, 12, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Kroll, C.N.; Nowak, D.J.; Greenfield, E.J. A review of urban forest modeling: Implications for management and future research. Urban For. Urban Green. 2019, 43, 126366. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Ozkan, U.Y.; Demirel, T.; Ozdemir, I.; Arekhi, M. Estimation of Structural Diversity in Urban Forests Based on Spectral and Textural Properties Derived from Digital Aerial Images. J. Indian Soc. Remote Sens. 2019, 47, 2061–2071. [Google Scholar] [CrossRef]
- Azeez, O.S.; Pradhan, B.; Jena, R. Urban tree classification using discrete-return LiDAR and an object-level local binary pattern algorithm. Geocarto Int. 2021, 36, 1785–1803. [Google Scholar] [CrossRef]
- Davies, H.J.; Doick, K.J.; Hudson, M.D.; Schaafsma, M.; Schreckenberg, K.; Valatin, G. Business attitudes towards funding ecosystem services provided by urban forests. Ecosyst. Serv. 2018, 32, 159–169. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Liu, X. A Review: Individual Tree Species Classification Using Integrated Airborne LiDAR and Optical Imagery with a Focus on the Urban Environment. Forests 2019, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.S.W.; Batterman, S.A.; Brines, S.J. Improved Classification of Urban Trees Using a Widespread Multi-Temporal Aerial Image Dataset. Remote Sens. 2020, 12, 2475. [Google Scholar] [CrossRef]
- Gong, J.Y.; Liu, C.; Huang, X. Advances in urban information extraction from high-resolution remote sensing imagery. Sci. China Earth Sci. 2019, 63, 463–475. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Johansen, K.; Maron, M.; McAlpine, C.A.; Wu, D.; Rhodes, J.R. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping. Sci. Total Environ. 2018, 622, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Lutz, W.; Sanderson, W.; Scherbov, S. The end of world population growth. Nat. Cell Biol. 2001, 412, 543–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubbings, P.; Peskett, J.; Rowe, F.; Arribas-Bel, D. A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning. Remote Sens. 2019, 11, 1395. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Livesley, S.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc. Ecol. 2013, 28, 959–978. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Helletsgruber, C.; Gillner, S.; Gulyás, Á.; Junker, R.R.; Tanács, E.; Hof, A. Identifying Tree Traits for Cooling Urban Heat Islands—A Cross-City Empirical Analysis. Forests 2020, 11, 1064. [Google Scholar] [CrossRef]
- Alonzo, M.; McFadden, J.P.; Nowak, D.J.; Roberts, D.A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 2016, 17, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Atasoy, M. Characterizing spatial structure of urban tree cover (UTC) and impervious surface cover (ISC) density using remotely sensed data in Osmaniye, Turkey. SN Appl. Sci. 2020, 2, 387. [Google Scholar] [CrossRef] [Green Version]
- Nitoslawski, S.A.; Galle, N.J.; Van Den Bosch, C.K.; Steenberg, J.W. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- Öztürk, M. The Role of Urban Forests in Adaptation to Climate Change. In Proceedings of the International Forestry Symposium; Kastamonu, Turkey, 7–10 December 2016. [Google Scholar]
- Hoornweg, D.; Sugar, L.; Gómez, C.L.T. Cities and greenhouse gas emissions: Moving forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Livesley, S.J.; Ossola, A.; Threlfall, C.; Hahs, A.K.; Williams, N. Soil Carbon and Carbon/Nitrogen Ratio Change under Tree Canopy, Tall Grass, and Turf Grass Areas of Urban Green Space. J. Environ. Qual. 2016, 45, 215–223. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Tigges, J.; Lakes, T. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments. Carbon Balance Manag. 2017, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Braat, L.C.; de Groot, R. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Geneletti, D.; Cortinovis, C.; Zardo, L.; Adem Esmail, B. Planning for Ecosystem Services in Cities; Springer Briefs in Environmental Science; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-20024-4. [Google Scholar]
- Grandgirard, J.; Poinsot, D.; Krespi, L.; Nenon, J.-P.; Cortesero, A.-M. Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Èntomol. Exp. Appl. 2002, 103, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Oosterbroek, B.; de Kraker, J.; Huynen, M.M.; Martens, P. Assessing ecosystem impacts on health: A tool review. Ecosyst. Serv. 2016, 17, 237–254. [Google Scholar] [CrossRef]
- Vogt, J.; Hauer, R.; Fischer, B. The Costs of Maintaining and Not Maintaining the Urban Forest: A Review of the Urban Forestry and Arboriculture Literature. Arboric. Urban For. 2015, 41, 293–323. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Haase, D.; Jänicke, C.; Wellmann, T. Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landsc. Urban Plan. 2019, 182, 44–54. [Google Scholar] [CrossRef]
- Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning. Sensors 2019, 19, 1284. [Google Scholar] [CrossRef] [Green Version]
- Timilsina, S.; Aryal, J.; Kirkpatrick, J. Mapping Urban Tree Cover Changes Using Object-Based Convolution Neural Network (OB-CNN). Remote Sens. 2020, 12, 3017. [Google Scholar] [CrossRef]
- Timilsina, S.; Sharma, S.K.; Aryal, J. Mapping Urban Trees within Cadastral Parcels Using an Object-Based Convolutional Neural Network. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ratti, C.; Seiferling, I. Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View. Landsc. Urban Plan. 2018, 169, 81–91. [Google Scholar] [CrossRef]
- Bayat, F.; Arefi, H.; Alidoost, F. Individual Tree Detection and Determination of Tree Parameters Using Uav-Based Lidar Data. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Norton, B.; Siriwardena, G.M.; Pescott, O.L.; Plummer, K.E.; Mears, M.; Zawadzka, J.; et al. Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity. Landsc. Urban Plan. 2019, 189, 382–395. [Google Scholar] [CrossRef]
- Marrs, J.; Ni-Meister, W. Machine Learning Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data. Remote Sens. 2019, 11, 819. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, U.Y.; Ozdemir, I.; Saglam, S.; Yesil, A.; Demirel, T. Evaluating the Woody Species Diversity by Means of Remotely Sensed Spectral and Texture Measures in the Urban Forests. J. Indian Soc. Remote Sens. 2016, 44, 687–697. [Google Scholar] [CrossRef]
- Wegner, J.D.; Branson, S.; Hall, D.; Schindler, K.; Perona, P. Cataloging Public Objects Using Aerial and Street-Level Images—Urban Trees. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA, 27–30 June 2016; pp. 6014–6023. [Google Scholar]
- Jiang, B.; Deal, B.; Pan, H.; Larsen, L.; Hsieh, C.-H.; Chang, C.-Y.; Sullivan, W. Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density. Landsc. Urban Plan. 2017, 157, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green streets−Quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Srivastava, S.; Muñoz, J.E.V.; Lobry, S.; Tuia, D. Fine-grained landuse characterization using ground-based pictures: A deep learning solution based on globally available data. Int. J. Geogr. Inf. Sci. 2020, 34, 1117–1136. [Google Scholar] [CrossRef]
- Brabant, C.; Alvarez-Vanhard, E.; Laribi, A.; Morin, G.; Nguyen, K.T.; Thomas, A.; Houet, T. Comparison of Hyperspectral Techniques for Urban Tree Diversity Classification. Remote Sens. 2019, 11, 1269. [Google Scholar] [CrossRef] [Green Version]
- World View Legion. Available online: https://www.maxar.com/splash/it-takes-a-legion (accessed on 4 November 2021).
- Planet Labs Inc. Planet. Available online: https://www.planet.com/ (accessed on 1 March 2021).
- Google Maps Platform. Available online: https://developers.google.com/ (accessed on 11 November 2021).
- Tencent. Available online: https://www.tencent.com/en-us (accessed on 11 November 2021).
- Louarn, M.; Clergeau, P.; Briche, E.; Deschamps-Cottin, M. “Kill Two Birds with One Stone”: Urban Tree Species Classification Using Bi-Temporal Pléiades Images to Study Nesting Preferences of an Invasive Bird. Remote Sens. 2017, 9, 916. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Fu, B.; Yang, X.; Lü, Y. Remote sensing of ecosystem services: An opportunity for spatially explicit assessment. Chin. Geogr. Sci. 2010, 20, 522–535. [Google Scholar] [CrossRef] [Green Version]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2017; ISBN 978-1-4919-6229-9. [Google Scholar]
- Pibre, L.; Chaumon, M.; Subsol, G.; Lenco, D.; Derras, M. How to deal with multi-source data for tree detection based on deep learning. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 1150–1154. [Google Scholar]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Cimburova, Z.; Barton, D.N. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 2020, 55, 126801. [Google Scholar] [CrossRef]
- Moura, M.; de Oliveira, L.; Sanquetta, C.; Bastos, A.; Mohan, M.; Corte, A. Towards Amazon Forest Restoration: Automatic Detection of Species from UAV Imagery. Remote Sens. 2021, 13, 2627. [Google Scholar] [CrossRef]
- Hamdi, Z.M.; Brandmeier, M.; Straub, C. Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data. Remote Sens. 2019, 11, 1976. [Google Scholar] [CrossRef] [Green Version]
- Thiebes, S.; Lins, S.; Sunyaev, A. Trustworthy artificial intelligence. Electron. Mark. 2021, 31, 447–464. [Google Scholar] [CrossRef]
- Pullin, A.S.; Stewart, G.B. Guidelines for Systematic Review in Conservation and Environmental Management. Conserv. Biol. 2006, 20, 1647–1656. [Google Scholar] [CrossRef]
- Long, Y.; Liu, L. How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View. PLoS ONE 2017, 12, e0171110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ratti, C. Mapping the spatial distribution of shade provision of street trees in Boston using Google Street View panoramas. Urban For. Urban Green. 2018, 31, 109–119. [Google Scholar] [CrossRef]
- Pan, T.; Kuang, W.; Hamdi, R.; Zhang, C.; Zhang, S.; Li, Z.; Chen, X. City-Level Comparison of Urban Land-Cover Configurations from 2000–2015 across 65 Countries within the Global Belt and Road. Remote Sens. 2019, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- Shojanoori, R.; Shafri, H. Review on the Use of Remote Sensing for Urban Forest Monitoring. Arboric. Urban For. 2016, 42. [Google Scholar] [CrossRef]
- Giannico, V.; Lafortezza, R.; John, R.; Sanesi, G.; Pesola, L.; Chen, J. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR. Remote Sens. 2016, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- Chi, D.; Degerickx, J.; Yu, K.; Somers, B. Urban Tree Health Classification Across Tree Species by Combining Airborne Laser Scanning and Imaging Spectroscopy. Remote Sens. 2020, 12, 2435. [Google Scholar] [CrossRef]
- Cardil, A.; Otsu, K.; Pla, M.; Silva, C.A.; Brotons, L. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery. PLoS ONE 2019, 14, e0213027. [Google Scholar] [CrossRef]
- Gage, E.A.; Cooper, D.J. Urban forest structure and land cover composition effects on land surface temperature in a semi-arid suburban area. Urban For. Urban Green. 2017, 28, 28–35. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, T.; Liu, J.; Li, X.; Liang, C. Hierarchical Instance Recognition of Individual Roadside Trees in Environmentally Complex Urban Areas from UAV Laser Scanning Point Clouds. ISPRS Int. J. Geo-Inf. 2020, 9, 595. [Google Scholar] [CrossRef]
- Baines, O.; Wilkes, P.; Disney, M. Quantifying urban forest structure with open-access remote sensing data sets. Urban For. Urban Green. 2020, 50, 126653. [Google Scholar] [CrossRef]
- Matasci, G.; Coops, N.C.; Williams, D.A.R.; Page, N. Mapping tree canopies in urban environments using airborne laser scanning (ALS): A Vancouver case study. For. Ecosyst. 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xin, Q.; Huang, J.; Huang, B.; Zhang, H. Characterizing Tree Species of a Tropical Wetland in Southern China at the Individual Tree Level Based on Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4415–4425. [Google Scholar] [CrossRef]
- Barbierato, E.; Bernetti, I.; Capecchi, I.; Saragosa, C. Integrating Remote Sensing and Street View Images to Quantify Urban Forest Ecosystem Services. Remote Sens. 2020, 12, 329. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yao, W.; Polewski, P. Mapping Individual Tree Species and Vitality along Urban Road Corridors with LiDAR and Imaging Sensors: Point Density versus View Perspective. Remote Sens. 2018, 10, 1403. [Google Scholar] [CrossRef] [Green Version]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.; et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Fassnacht, F.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote Sensing in Urban Forestry: Recent Applications and Future Directions. Remote Sens. 2019, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- Degerickx, J.; Hermy, M.; Somers, B. Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data. Sustainability 2020, 12, 2144. [Google Scholar] [CrossRef] [Green Version]
- Rogers, S.; Manning, I.; Livingstone, W. Comparing the Spatial Accuracy of Digital Surface Models from Four Unoccupied Aerial Systems: Photogrammetry Versus LiDAR. Remote Sens. 2020, 12, 2806. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Vahidi, H.; Klinkenberg, B.; Johnson, B.A.; Moskal, L.M.; Yan, W. Mapping the Individual Trees in Urban Orchards by Incorporating Volunteered Geographic Information and Very High Resolution Optical Remotely Sensed Data: A Template Matching-Based Approach. Remote Sens. 2018, 10, 1134. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Zhu, D.; Xu, Y.; Zhang, M.; Huang, Z.; Liu, H.; et al. Intelligent Mapping of Urban Forests from High-Resolution Remotely Sensed Imagery Using Object-Based U-Net-DenseNet-Coupled Network. Remote Sens. 2020, 12, 3928. [Google Scholar] [CrossRef]
- Choudhury, A.M.; Marcheggiani, E.; Despini, F.; Costanzini, S.; Rossi, P.; Galli, A.; Teggi, S. Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management. Forests 2020, 11, 1226. [Google Scholar] [CrossRef]
- Cârlan, I.; Mihai, B.-A.; Nistor, C.; Große-Stoltenberg, A. Identifying urban vegetation stress factors based on open access remote sensing imagery and field observations. Ecol. Inform. 2020, 55, 101032. [Google Scholar] [CrossRef]
- Maxar QuickBird. Available online: https://resources.maxar.com/data-sheets/quickbird (accessed on 4 November 2021).
- Gong, F.-Y.; Zeng, Z.-C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- ESA Pleiades-HR (High-Resolution Optical Imaging Constellation of CNES). Available online: https://earth.esa.int/web/eoportal/satellite-missions/p/pleiades (accessed on 4 November 2021).
- Lin, Y.; Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agric. For. Meteorol. 2016, 216, 105–114. [Google Scholar] [CrossRef]
- Dainelli, R.; Toscano, P.; Di Gennaro, S.; Matese, A. Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing—A Systematic Review. Part I: A General Framework. Forests 2021, 12, 327. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Haas, A.; Karrasch, P.; Bernard, L. Acquisition of Urban Trees Using Artificial Neural Networks and Remote Sensing Data. gis.Sci. —Die Z. Fur Geoinformatik 2020, 2020, 31–40. [Google Scholar]
- Aval, J.; Demuynck, J.; Zenou, E.; Fabre, S.; Sheeren, D.; Fauvel, M.; Adeline, K.; Briottet, X. Detection of individual trees in urban alignment from airborne data and contextual information: A marked point process approach. ISPRS J. Photogramm. Remote Sens. 2018, 146, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Yu, C.C.; Wang, T.Y.; Chen, T.Y. Classification of the tree for aerial image using a deep convolution neural network and visual feature clustering. J. Supercomput. 2019, 76, 2503–2517. [Google Scholar] [CrossRef]
- Birdal, A.C.; Avdan, U.; Türk, T. Estimating tree heights with images from an unmanned aerial vehicle. Geomat. Nat. Hazards Risk 2017, 8, 1144–1156. [Google Scholar] [CrossRef] [Green Version]
- Minařík, R.; Langhammer, J.; Lendzioch, T. Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests. Remote Sens. 2020, 12, 4081. [Google Scholar] [CrossRef]
- Lindgren, N.; Wästlund, A.; Bohlin, I.; Nyström, K.; Nilsson, M.; Olsson, H. Updating of forest stand data by using recent digital photogrammetry in combination with older airborne laser scanning data. Scand. J. For. Res. 2021, 36, 401–407. [Google Scholar] [CrossRef]
- Roberts, J.; Koeser, A.; Abd-Elrahman, A.; Wilkinson, B.; Hansen, G.; Landry, S.; Perez, A. Mobile Terrestrial Photogrammetry for Street Tree Mapping and Measurements. Forests 2019, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, A.M.; Costanzini, S.; Despini, F.; Rossi, P.; Galli, A.; Marcheggiani, E.; Teggi, S. Photogrammetry and Remote Sensing for the identification and characterization of trees in urban areas. J. Phys. Conf. Ser. 2019, 1249, 012008. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Edwards, P.J. Quantifying street tree regulating ecosystem services using Google Street View. Ecol. Indic. 2017, 77, 31–40. [Google Scholar] [CrossRef]
- Laumer, D.; Lang, N.; van Doorn, N.; Mac Aodha, O.; Perona, P.; Wegner, J.D. Geocoding of trees from street addresses and street-level images. ISPRS J. Photogramm. Remote Sens. 2020, 162, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y. The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness. Int. J. Environ. Res. Public Health 2018, 15, 1576. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, L.; Zhang, J.; Yang, Y.; Tian, P.; Wang, H.; He, X. Potential of Internet street-view images for measuring tree sizes in roadside forests. Urban For. Urban Green. 2018, 35, 211–220. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, Y.; Zhao, J. How Green Are the Streets Within the Sixth Ring Road of Beijing? An Analysis Based on Tencent Street View Pictures and the Green View Index. Int. J. Environ. Res. Public Health 2018, 15, 1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Hong, K.Y.; Tsin, P.K.; Bosch, M.V.D.; Brauer, M.; Henderson, S.B. Urban greenness extracted from pedestrian video and its relationship with surrounding air temperatures. Urban For. Urban Green. 2019, 38, 280–285. [Google Scholar] [CrossRef]
- Cook, B.D.; Corp, L.A.; Nelson, R.F.; Middleton, E.M.; Morton, D.C.; McCorkel, J.T.; Masek, J.G.; Ranson, K.J.; Ly, V.; Montesano, P.M. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager. Remote Sens. 2013, 5, 4045–4066. [Google Scholar] [CrossRef] [Green Version]
- I-Tree Canopy; i-Tree; USDA. 2016. Available online: https://canopy.itreetools.org/ (accessed on 11 November 2021).
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Comaniciu, D.; Meer, P. Mean shift analysis and applications. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, 20–25 September 1999; Volume 2, pp. 1197–1203. [Google Scholar]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Silva, C.A.; Valbuena, R.; Pinagé, E.R.; Mohan, M.; De Almeida, D.R.A.; Broadbent, E.N.; Jaafar, W.S.W.M.; Papa, D.D.A.; Cardil, A.; Klauberg, C. F orest G ap R: An r Package for forest gap analysis from canopy height models. Methods Ecol. Evol. 2019, 10, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Keceli, A.S.; Catal, C.; Yalic, H.Y.; Temucin, H.; Tekinerdogan, B. Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 2019, 158, 20–29. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Nex, F.; Vosselman, G. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS J. Photogramm. Remote Sens. 2018, 140, 45–59. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- AgiSoft PhotoScan Professional. 2016. Available online: https://www.agisoft.com/ (accessed on 30 November 2021).
- Swiss Federal Institute of Technology Lausanne. Pix4D–Drone Mapping Software, Switzerland. 2014. Available online: https://www.pix4d.com/ (accessed on 30 November 2021).
- Lary, D.; Alavi, A.H.; Gandomi, A.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Mongus, D.; Vilhar, U.; Skudnik, M.; Žalik, B.; Jesenko, D. Predictive analytics of tree growth based on complex networks of tree competition. For. Ecol. Manag. 2018, 425, 164–176. [Google Scholar] [CrossRef]
- Tin Kam, H. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Computer Society Press: Montreal, QC, Canada, 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Torii, A.; Havlena, M.; Pajdla, T. From Google Street View to 3D city models. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 2188–2195. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. arXiv 2017, arXiv:1612.00593v2. [Google Scholar]
- Badrinarayanan, V.; Handa, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling. arXiv 2015, arXiv:1505.07293. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6245. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, K.; Sun, H.; Sun, X. An Aircraft Detection Framework Based on Reinforcement Learning and Convolutional Neural Networks in Remote Sensing Images. Remote Sens. 2018, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Liu, B.; Zhou, Y.; Zhao, J. Remote sensing image caption generation via transformer and reinforcement learning. Multimedia Tools Appl. 2020, 79, 26661–26682. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Ørka, H.O.; Holmgren, J.; Dalponte, M.; Heinzel, J.; Koch, B. Tree Species Recognition Based on Airborne Laser Scanning and Complementary Data Sources. In Forestry Applications of Airborne Laser Scanning; Springer: Berlin/Heidelberg, Germany, 2014; Volume 27, pp. 135–156. [Google Scholar] [CrossRef]
Search Terms | WOS | Scopus |
---|---|---|
“Remote sensing” AND (“Urban Forest” OR “Urban tree”) AND “Machine Learning” OR “Artificial intelligence” | 3 | 20 |
“Ecosystem services” AND (“Urban Forest” OR “Urban tree”) AND “Remote Sensing” | 15 | 35 |
“Ecosystem services” AND (“Urban Forest” OR “Urban tree”) AND “Remote Sensing” AND “Tree characterization” | 7 | 6 |
“Street tree” AND “Ecosystem service*” AND Ground-level* | 0 | 1 |
“Remote sensing” AND (“Urban Forest” OR “Urban tree”) AND “Deep Learning” | 6 | 5 |
(“Urban Forest” OR “Urban tree”) AND photogrammetry | 4 | 4 |
(“Urban Forest” OR “Urban tree”) AND “Remote data” AND MaxEnt | 0 | 0 |
(“Urban Forest” OR “Urban tree”) AND “Remote data” AND SDMtoolbox | 0 | 0 |
(“Urban Forest” OR “Urban tree”) AND “Remote data” AND “Spatial modeling” | 0 | 0 |
“Street tree” AND Ground-level* | 1 | 4 |
Total | 32 | 71 |
Type | Metrics | Specifications | Pulse Density | Spatial Accuracy | References | |
---|---|---|---|---|---|---|
Horizontal | Vertical | |||||
(m) | (m) | |||||
ALS | DEM, DSM | - | 1/m2 | 0.15 | 0.3 | Timilsina et al., (2019) [39]. |
Point cloud density. | GRSS | - | - | - | Wang et al., (2020) [73]. | |
7 structural metrics (tree height, width-to-height ratios, crown porosity) | RIEGL Q560 | 22/m2 | - | Alonzo et al., (2016) [21]. | ||
DEM, tree cloud points | Wang et al., (2020) [73]. | |||||
2D and 3D distances between points | - | 12/m2 | 0.01 | 0.02 | Bayat et al., (2019) [41]. | |
32 statistical metrics (mean, median, density etc.) | (G-LiHT) | 6/m2 | - | - | Marrs and Ni-Meister (2019) [43]. | |
DEM, DSM | - | 4/m2 | - | - | Azeez et al., (2019) [8]. | |
DTM, DSM, intensity | - | 0.74/m2 | - | - | Hartling et al., (2019) [37]. | |
Canopy Cover, CHM, 27 statistical metrics | UK Environment Agency | - | - | - | Baines et al., (2020) [74]. | |
CHM | - | 12/m2 | 0.18 | 0.36 | Matasci et al., (2018) [75]. | |
DEM, DSM, CHM | Trimble Harrier 68i | 8/m2 | - | - | Sun et al., (2019) [76]. | |
NVA, nDSM, DSM, intensity | Sanborn Mapping Company | 2.2/m2 | - | - | Katz et al., (2020) [11]. | |
CHM | Climate Future Mission/ Willington Mission | 1.5/m2–1/m2 | 0.25 | 0.15 | Timilsina et al., (2020) [38]. | |
140 ALS indices (height indices, intensity indices, point density indices, tree size and shape indices) | AeroData Surveys Nederland BV | 15/m2 | - | - | Chi et al., (2020) [70]. | |
CHM, nDSM | Italian Ministry of the Environment | - | 0.3 | 0.15 | Barbierato et al., (2019) [77]. | |
Space-borne | nDSM, CHM | NOAA Digital Coast | 0.15 | 0.5 | 0.15 | Li et al., (2017) [40], |
DSM | Li and Ratti (2018) [66]. | |||||
MLS(TLS)—ALS | Point cloud density. | Z + F IMAGER® 5010 /RIEGL LMS-Q680i | 1000/m2–40/m2 | - | - | Wu et al., (2018) [78]. |
Satellite | Spatial Resolution (m) | Bands | Spectrum (nm) | References |
---|---|---|---|---|
QuickBird | 0.6 | 4 | 450–800 | Timilsina et al., (2020) [38]. |
WorldView 2 (WV2) | 0.5–2.5 | 8 | 450–800 | Katz et al., (2020) [11], Hartling et al., (2019) [37], Sun et al., (2019) [76]. |
WorldView 3 (WV3) | 0.31–2 | 9 | 450–1.040 | Hartling et al., (2019) [37], Vahidi et al., (2018) [86], He et al., (2020) [87], Choudhury et al., (2020) [88]. |
RapidEye | 5 | 5 | 440–850 | Ozkan et al., (2016) [44]. |
Pleiades | 0.5–2 | 5 | 470–944 | Louarn et al., (2107) [54]. |
Landsat | 30 | 11 | 430–1.251 | Ozkan et al., (2016) [44], Gage and Cooper. (2017) [72] |
Sentinel | 10 | 13 | 430–2.280 | Brabant et al., (2019) [49], Baines et al., (2020) [74]. |
Type | Spatial Resolution (m) | Bands | Spectrum (nm) | References |
---|---|---|---|---|
Aircraft Intergraph/ZI DMC | 0.09 | 4 | 400–800 | Pibre et al., (2018) [58]. |
Unspecified Airborne platform | 0.1 | 3 | 400–580 | Azeez et al., (2019) [8]. |
Aircraft UltraCam Xp | 0.2 | 5 | 410–1000 | Barbierato et al., (2020) [77]. |
Unspecified | 0.2 | 4 | 400–800 | Haas et al., (2020) [96]. |
Aircraft UltraCam X | 0.3 | 4 | 410–1000 | Ozkan et al., (2019) [7]. |
Aircraft G-LiHT | 1 | 114 | 418–918 | Marrs and Ni-Meister (2019) [43]. |
Aircraft AVIRIS sensor | 3.17 | 224 | 364–2500 | Alonzo et al., (2016) [21]. |
UAV HySpex HYPXIM | 2 8 | 192 | 410–960 960–2500 | Brabant et al., (2018) [49]. |
Unspecified Airborne Sensors | - | 4 | 400–800 | Timilsina et al., (2019) [39]. |
UAV HySpex | 0.4–0.8 | 160 | 400–1000 | Aval et al., (2018) [97]. |
Aircraft Trimble Harrier 68i | 0.4–0.8 | 3 | 400–580 | Sun et al., (2019) [76]. |
Nearmap | 0.7 | 3 | 400–580 | Katz et al., (2020) [11]. |
Aircraft NAIP | 1 | 4 | 400–800 | Gage et al., (2017) [72]. |
LandMap UK | - | 4 | 400–800 | Grafius et al., (2019) [42]. |
Google Aerial Image | - | 3 | 400–580 | Wegner et al., (2016) [45]. |
Unspecified | - | 3 | 400–580 | Lin et al., (2019) [98]. |
UAV eBee | 0.064 | - | - | Birdal et al. [99]. |
UAV | Minařík et al., (2020) [100]. | |||
DJI Matrice 210 RTK | 0.06 | - | - | |
MicaSense RedEdge-M | 0.1 | 4 | 475–840 |
Source | GLI | Range Distance (m) | References |
---|---|---|---|
Google Street-view | Standard images | 10 | Stubbings et al., (2019) [15], Richards and Edwards (2017) [104]. |
15 | Wegner et al., (2016) [45], Seiferling et al., (2017) [47], Laumer et al., (2020) [105]. | ||
50 | Lu et al., (2018) [106], Ye et al., (2019) [107]. | ||
Panoramic images | 20 | Li et al., (2018) [66]. | |
30 | Gong et al., (2018) [91]. | ||
100 | Li et al., (2018) [40]. | ||
ND | Jiang et al., (2016) [46], Barbierato et al., (2020) [77], Wang et al., (2018) [108], Branson et al., (2018) [45]. | ||
Tencent Street-view | Standard images | 20 | Dong et al., (2018) [109]. |
88 | Long and Lu (2017) [65]. | ||
DSLR camera | PPC | 30 | Roberts et al. [102]. |
SLR camera | PPC | static | Choudhury et al. [88]. |
Digital Image Processing Algorithms | References |
---|---|
Neighbor weight | Seiferling et al., (2017) [47]. |
Mean shift | Li et al., (2017) [40], Li y Ratti (2018) [66], Louarn et al., (2017) [54]. |
HSI | Dong et al., (2018) [109], Richards and Edwards (2017) [104], Hong et al., (2019) [111], Chi et al., (2020) [70]. |
Nearest neighbor | Choudhury et al. [88]. |
K-nearest | Marrs and Ni-Meister (2019) [43], Minařík et al. [100]. |
Spectral difference segmentation LBP | Azeez et al., (2019) [8]. |
Compact watershed | Matasci et al., (2018) [75], Minařík et al. [100]. |
Grey level co-occurrence matrix | Ozkan et al., (2016) [44], Azeez et al., (2019) [8], Choudhury et al. [88]. |
Dalponte individual tree segmentation | Minařík et al. [100]. |
Li2012 | Minařík et al. [100]. |
TM | Vahidi et al., (2018) [86]. |
3D graph cuts algorithm | Wu et al., (2018) [78]. |
Segmentation GIS | Bayat et al., (2019) [41], Jiang et al., (2017) [46], Long and Liu (2017) [65]. |
SfM | Minařík et al. [100], Roberts et al. [102], Choudhury et al. [88], Birdal et al. [99]. |
Algorithm | References | |
---|---|---|
RF | Only RF | Baines et al. [74], Haase et al. [36], Katz et al. [11]. |
CNN | Stubbings et al., (2019) [15], Hartling et al., (2019) [37]. | |
SVM | Hartling et al., (2019) [37], Brabant et al., (2019) [49], Louarn et al., (2017) [54]. | |
HSI | Chi et al., (2020) [70]. | |
Compact Watershed | Matasci et al., (2018) [75]. | |
SVM | CNN | Ye et al., (2018) [107]. |
SDS | Azeez et al., (2019) [8]. |
CNN Architecture | References |
---|---|
PSPNet | Stubbings et al., (2019) [15], Gong et al., (2018) [91]. |
Faster R-CNN | Wegner et al., (2016) [45], Laumer et al., (2020) [105]. |
ResNet | Sun et al., (2019) [76], Torii et al., (2019) [126]. |
SegNet | Ye et al., (2019) [107]. |
VGG16 | Branson et al., (2018) ) [45]. |
YOLO | Lin et al., (2019) [98]. |
DCNN | Hartling et al., (2019) [37], He et al., (2020) [87]. |
PointNet | Wang et al., (2020) [73]. |
Bayesian Network | Grafius et al., (2019) [42]. |
Other | Timilsina et al., (2020) [38], Timilsina et al., (2019) [39], Pibre et al., (2018) [58], Haas et al., (2020) [96]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasquez-Camacho, L.; Cardil, A.; Mohan, M.; Etxegarai, M.; Anzaldi, G.; de-Miguel, S. Remotely Sensed Tree Characterization in Urban Areas: A Review. Remote Sens. 2021, 13, 4889. https://doi.org/10.3390/rs13234889
Velasquez-Camacho L, Cardil A, Mohan M, Etxegarai M, Anzaldi G, de-Miguel S. Remotely Sensed Tree Characterization in Urban Areas: A Review. Remote Sensing. 2021; 13(23):4889. https://doi.org/10.3390/rs13234889
Chicago/Turabian StyleVelasquez-Camacho, Luisa, Adrián Cardil, Midhun Mohan, Maddi Etxegarai, Gabriel Anzaldi, and Sergio de-Miguel. 2021. "Remotely Sensed Tree Characterization in Urban Areas: A Review" Remote Sensing 13, no. 23: 4889. https://doi.org/10.3390/rs13234889
APA StyleVelasquez-Camacho, L., Cardil, A., Mohan, M., Etxegarai, M., Anzaldi, G., & de-Miguel, S. (2021). Remotely Sensed Tree Characterization in Urban Areas: A Review. Remote Sensing, 13(23), 4889. https://doi.org/10.3390/rs13234889