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Abstract: Storms can cause significant damage to forest areas, affecting biodiversity and infrastructure
and leading to economic loss. Thus, rapid detection and mapping of windthrows are crucially
important for forest management. Recent advances in computer vision have led to highly-accurate
image classification algorithms such as Convolutional Neural Network (CNN) architectures.
In this study, we tested and implemented an algorithm based on CNNs in an ArcGIS environment
for automatic detection and mapping of damaged areas. The algorithm was trained and tested on a
forest area in Bavaria, Germany. It is a based on a modified U-Net architecture that was optimized
for the pixelwise classification of multispectral aerial remote sensing data. The neural network was
trained on labeled damaged areas from after-storm aerial orthophotos of a ca. 109km2 forest area with
RGB and NIR bands and 0.2-m spatial resolution. Around 107 pixels of labeled data were used in the
process. Once the network is trained, predictions on further datasets can be computed within seconds,
depending on the size of the input raster and the computational power used. The overall accuracy
on our test dataset was 92%. During visual validation, labeling errors were found in the reference
data that somewhat biased the results because the algorithm in some instance performed better than
the human labeling procedure, while missing areas affected by shadows. Our results are very good
in terms of precision, and the methods introduced in this paper have several additional advantages
compared to traditional methods: CNNs automatically detect high- and low-level features in the data,
leading to high classification accuracies, while only one after-storm image is needed in comparison to
two images for approaches based on change detection. Furthermore, flight parameters do not affect
the results in the same way as for approaches that require DSMs and DTMs as the classification is only
based on the image data themselves, and errors occurring in the computation of DSMs and DTMs
do not affect the results with respect to the z component. The integration into the ArcGIS Platform
allows a streamlined workflow for forest management, as the results can be accessed by mobile
devices in the field to allow for high-accuracy ground-truthing and additional mapping that can be
synchronized back into the database. Our results and the provided automatic workflow highlight
the potential of deep learning on high-resolution imagery and GIS for fast and efficient post-disaster
damage assessment as a first step of disaster management.
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1. Introduction

One consequence of climate change is an increase in natural disasters such as storms, which
can cause significant damage in forest areas. Windthrow caused by storms results in loss of timber
and therefore economic loss, but also affects the forest ecosystem [1]. For example, in August 2017,
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the storm “Kolle” in Bavaria caused ca. 2.3 million m3 of damaged timber volume [2]. In the future,
more damage by storms is expected due to Climate Change [3], but also due to forest management
activities in the past that resulted in a changing ratio of autochthonous to non-autochthonous species
compositions [4,5] such as a shift from deciduous trees to more unstable conifers [6], for many regions
in Europe. After a large-scale storm event, reliable information on the location and size of the affected
forest stands is required for an efficient and timely harvest of the damaged trees. This is especially
important to reduce the risk of subsequent biotic damages, (e.g. damaged spruce trees can be breeding
material for the European spruce bark beetle Ips typographus (L.) [7]). Traditional methods of forest
damage assessment include ground surveys using global navigation satellite systems (GNSS) [8] and
remote sensing. Remote sensing methods are especially suited for early-stage detection and estimates
when accessibility for ground-surveys is still not possible, as the area needs to be cleared to provide
access and security [5]. Remote sensing analysis depends on the scale and accuracy needed, as well as
the weather conditions: Landsat and Sentinel 2 data are freely available, but only provide a medium
spatial resolution (decameters). Landsat was widely used in forestry, but only has a low temporal
resolution, while Sentinel-2 has a five-day revisit time in ideal cases and was, for example, successfully
used for forest type and tree species mapping (e.g., [9,10]). In addition to these passive sensing methods,
airborne laser scanning (ALS) and radar images are widely used in forestry because they provide
accurate information about canopy height and structure and the underlying terrain ([11]). Many
studies related to forestry also use quantitative statistical method (e.g., [12]) and indices such as the leaf
area index [13] to assess change in the forest phenology and structure. Most methods related to storm
damage assessment in forests are based on change detection. One option is to analyze changes in the
spectral and textural characteristics of optical remote sensing data (e.g., [7,14,15]). Another approach
is to evaluate changes in elevation models. In this context, Honkavaara [16] compared an after-storm
digital surface model derived from aerial photographs with a surface model obtained from ALS,
and the work in [17] developed a workflow that is purely based on photogrammetric canopy height
models. All these methods require two datasets: a pre- and a post-storm image, which is either costly
(flight campaigns) or sometimes not available depending on atmospheric conditions and revisit times
(Landsat, Sentinel-2). We introduce a novel approach that is only based on one after-storm image and
uses algorithms from computer vision: deep convolutional neural networks (CNNs). CNNs were for
the first time successfully applied by LeCun et al. (1998) [18] to recognize handwritten digits (LeNet
convolutional neural network [18]) and have rapidly developed during the past decade. They have
been used successfully in other fields of research such as medical image classification (e.g., [19]), object
detection (e.g., [20]), land cover classification (e.g., [21,22]), and many more. In remote sensing related
to forestry, the use of deep learning is a promising field of research. To our knowledge, there exist
just a few publications on the automatic detection and classification of trees [23,24] based on a U-net
architecture [19] and to map forest types and disturbance in the Atlantic rainforest [25]. In addition,
there is a conference paper on forest species recognition based on CNNs [26], but in general, there is
still a knowledge gap between computer science and remote sensing in general where deep learning is
widely used and in other fields of research such as forestry. Thus, the approach in this paper further
evaluates the potential of CNNs in applied forestry and has the potential of completely automatizing
the task of forest damage assessment.

2. Materials and Methods

2.1. Data

Our study area is located in Bavaria, Germany, within the districts Passau and Freyung-Grafenau.
After the storm Kolle on 18th of August 2017, the Bavarian State Institute of Forestry (Landesanstalt für
Wald und Forstwirtschaft (LWF)) commissioned an aerial survey to obtain a detailed overview of the
damaged forest areas. This flight campaign was finished on 30 August 2017. Aerial photographs were
acquired with four spectral bands (blue, green, red, near infrared) and 20-cm spatial resolution using a
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digital mapping camera (DMC), which is a digital aerial survey camera system manufactured by Leica
Geosystems Technologies. To produce stereo images, a forward overlap of 80% and a side overlap of
50% were defined. Orthophotos were computed using an already existing ALS-DTM of the Bavarian
Surveying Administration for orthorectification. Based on this image data, the damaged forest areas
were delineated manually at the LWF by aerial photo interpretation using the photogrammetric
software Summit Evolution in combination with ArcGIS. The resulting polygons served as training
and validation data for this study. We selected 12 labeled orthophotos with four spectral bands. Each
orthophoto had a size of 10,000 × 10,000 pixels and contained both damaged and non-damaged forest
zones, as well as other objects like buildings, roads, or meadows. Figure 1 shows an example of one
10,000× 10,000 pixel orthophoto and the respective labeling polygons.

Figure 1. Example of an orthophoto with the corresponding damaged area. The study area is located
in Bavaria, as shown in the overview. However, due to confidentiality agreements, we are not able to
add more location detail.
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2.2. Data Preprocessing

The overall workflow of preprocessing, network design, and prediction are shown in Figure 2.
Due to the size of the orthophotos and due to memory limitations when doing computations, it is
intuitive to process the orthophotos into relatively small labeled tiles (or rather small image cubes) and
feed them into the CNN. Each orthophoto of size 10,000 × 10,000 pixels was divided into 1525 tiles of
256 × 256 pixels. The data (orthophoto and corresponding labels) were then split into three datasets:
training (80%), validation (20%), and test (two full images of 10,000 × 10,000 pixels). The training
data were used for optimizing the neural network, while the validation dataset was used to assess the
performance during the training process. The test dataset was used to assess the performance of the
final optimized neural network. The training and validation images were read into arrays with the
shape (256, 256, 4). Labels were read as an array of shape (256, 256, 1) with the values 1 or 0 indicating
damaged or non-damaged (Figure 3).

Figure 2. Flowchart showing the analytical workflow of the study.
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Figure 3. (A) Example of a tile; (B) corresponding label (black: non-damaged, white: damaged).

2.3. CNN Architecture

As stated in the Introduction, there exist many different CNNs for different applications, and it is
important to find the appropriate solution for a specific task. Retraining existing powerful architectures
such as VGG19 [27], ResNet, or Inception Net to solve other problems by transfer learning is one
approach that is often used. However, this was not an option in our four-band setting and very
particular segmentation task with features that might differ significantly from features learned by
networks trained on common image datasets such as ImageNet. Thus, we opted to implement a U-Net
architecture, which is a particular implementation of a CNN first developed by Ronneberger [19] for
biomedical image segmentation. One major advantage of CNNs is the ability to extract spatial features
and to detect patterns independently of their position on the input image. The U-Net architecture is
shown in Figure 4 and is suited for our purpose as it does not require a large number of training samples
(it was the winner of the International Symposium on Biomedical Imaging (ISBI)cell tracking challenge
in 2015 using only 30 images of a size of 512× 512) [19]. The analogy between the sensor technology
used in biomedical imagery and remote sensing [28] suggests the suitability of this architecture for
remote sensing applications. The architecture is divided into two parts, the encoder and the decoder
paths (Figure 4). The encoder reduces the spatial dimensionality of the feature maps and learns to
keep only the most important features. The decoder increases the spatial dimensionality and learns
to recover the full spatial information. Due to the depth of the network, the information from the
encoding path is concatenated in the decoding path, which helps to assemble a more precise output [19].
During our study, we tested different hyperparameters to find an optimal setting for our problem.
The different parts of our final architecture, as well as the tested hyperparameter settings are described
in the following.

Figure 4. U-net architecture (experimental setup with 3 encoding blocks).
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Figure 5. Loss function of the model (training and validation).

2.4. Evaluation Metrics

To assess the performance of the neural network, several evaluation metrics were used. Evaluation
metrics were computed during the forward pass, and were not subject to maximization, but were
rather used as a performance indicator. This helped to optimize the hyperparameters of the model.
In this study, we used a custom implementation of the intersection over union metric. It computes the
intersection of the reference dataset and the predicted classification and divides it by the union of the
two (Equation (1)). In addition, we calculated the overall accuracy of the model (Equation (2)).

IoU =
TP

TP + FP + FN
(1)

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative.
Due to the fact that the feed-forward neural network outputs a probability of a class rather

than a class label, a threshold has to be set to obtain a confusion matrix and to be able to compute
the evaluation metrics. This threshold being unknown during the training, a custom metric was
implemented and operated according to the algorithm in Algorithm 1 to compute the mean intersection
over union for thresholds between 0.5 and 1.

Algorithm 1 Pseudocode for calculating a custom metric for thresholding.

1: Create an empty array to hold the intersection over union values for all thresholds IoUs
2:
3: Create array V of values between 0.5 and 1 with a step of 0.05
4:
5: Feed forward to do the pixelwise classification prediction P(C|X, W)
6:
7: for Every element k of array V do
8:
9: Compute confusion matrix elements for the threshold set at k

10:
11: Compute the intersection over union for threshold k
12:
13: Append the computed intersection over union for threshold k in array IoUs
14:
15: end for
16:
17: return the mean intersection over union mIoU ← mean(IoUs)

2.5. Training and Fine-Tuning of the U-Net Model

We implemented the neural network using Keras [29] and the Tensorflow backend [30] using
Python 3.5. A DGX-1 supercomputer was used for the training of the neural network. It contains
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eight high-end GPGPUs (general purpose graphic processing unit) from NVIDIA (Tesla P100) with
16 GB of RAM each. The training was based on backpropagation to update the neural network’s
weights using the Adam Optimizer [31] on the computed loss function, which is the cross-entropy
between the predicted pixel value of the label (probability of the class damaged) and the true pixel
value of the label (0 for non-damaged and 1 for damaged). The training stopped when overfitting
started to occur (when the neural network performed worse on the validation dataset and better on
the training dataset from one epoch to the next; this indicates that the neural network is starting to
fail to generalize). Fine-tuning of hyperparameters is very important for an optimal performance of
the network on a specific problem. We tested different settings to optimize our architecture (Table 1).
Several experiments were performed with different learning rates, numbers of filters, and numbers of
encoding and decoding blocks and are summarized in Table 1. These experiments were monitored
using TensorBoard and validated on the validation portion of the dataset.

Table 1. Hyperparameter fine-tuning results.

Scenario Number of Blocks Number of Filters Learning Rate Mean IoU Accuracy

1 3 64 , 64, 64 0.001 0.30 82%
2 4 64, 64, 64, 64 0.001 0.38 89%
3 5 64, 64, 64, 64, 64 0.001 0.36 86%
4 6 64, 64, 64, 64, 64, 64 0.001 0.32 86%
5 4 16, 32, 64, 128 0.001 0.42 94%
6 4 32, 64, 128, 256 0.001 0.38 88%
7 4 64, 128, 256, 512 0.001 0.31 84%
8 4 16, 32, 64, 128 0.01 0.008 71%
9 4 16, 32, 64, 128 0.0005 0.42 94%

10 4 16, 32, 64, 128 0.00001 0.39 90%

Scenario 5 was selected as the optimal solution as it had the best values for IoU and accuracy
while training on fewer epochs. The resulting architecture is shown in Figure 4 and described in
the following.

2.5.1. Encoding Path

The encoding path of our network was composed of three encoding blocks; each block was
composed of a convolutional layer with a filter of size (3, 3) and a ReLU activation function [32] ,
a dropout layer to force each neuron to learn more than only one feature, a second convolutional layer
followed by ReLU activation, and a max pooling layer with the size (2,2), which replaced each 2 × 2
region on the feature map by the region’s maximum value and thus decreased the size of the feature
map by keeping only the highest values.

2.5.2. Decoding Path

The decoding path was symmetrical to the encoding path and was divided into decoding blocks.
Each decoding block was composed of a concatenation layer that merged the feature maps from the
symmetrical encoding block, a convolutional layer with ReLU activation, a dropout layer, a second
convolutional layer, and a deconvolutional layer with a filter size of (3, 3) to increase the spatial
dimensionality of the input. The dropout layer was used for regularization. The dropout rate was set
to increase from one encoding block to the next by a step of 0.1 (starting from 0.1), resp. decreasing
from one decoding block to the next, and was found to work well for our setting. After the second
convolutional layer, the activation function used was SeLU. The intuition behind this choice was to
use the same activation function used in the encoding path to concatenate homogeneous feature maps
(the same value indicates the same signal in the data). The output layer was a deconvolutional layer
with the sigmoid activation function to output pixel values in the interval [0, 1], which corresponded
to the probability of the class “damaged”.
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2.6. Comparison to a Support Vector Machine Classifier and a Random Forest Algorithm

To better understand the performance of the CNN, comparisons with pixel-wise classifications
based on an SVM and an RF classifier were carried out using the 4 spectral bands of the orthophotos
(see Section 2.1) as predictors. Due to computational reasons, it was not possible to utilize the entire
original training dataset (as used for the CNN) for the SVM and the RF classifier. Thus, we used a
subsample of 10,000 randomly-selected pixels for the training phase of both classifiers. These pixels
were representative for the data space. Note that both classifiers used a pixel-based approach while the
CNN was extracting features and thus considered the spatial correlation between neighboring pixels.
For the SVM classifier, the radial basis function kernel (RBF) was applied. The RF classifier was run
with a maximum tree depth of 5 and 100 estimators (i.e., decision trees).

3. Results

During the monitoring of the training of the neural network using TensorBoard [30], it was
noticed that the validation loss was consistently lower than the training loss before the overfitting
point, as shown in Figure 5. This is explained by the effect of the dropout layers as suggested by
Veličković [33]. During the training process, the dropout layers randomly dropped some neurons,
causing the feed-forward network to perform worse, while dropout was deactivated and all neurons
were kept during the validation.

The implemented U-Net model with the optimized weights was used for the prediction on the
test dataset (two test images of 10,000 × 10,000 pixels) directly in ArcGIS Pro. This was achieved by
importing the saved model file into a toolbox. This process required an .emd file with specifications
about the model and a raster function to update the pixels. However, once this was done, the tool could
be applied on more scenes directly within the ArcGIS software and thus provide an efficient workflow
for forest departments after future storm events. Figure 6 shows the prediction results obtained from
the neural network on one test image. The probability of the class (damaged forest area) was assigned
to each pixel. This probability was represented as the brightness of the pixel (a probability of zero
corresponds to a black pixel and a probability of one to a white pixel), and a threshold needs to be
chosen to delineate the damaged areas.

The final goal for forest management was to obtain a classifier capable of a segmentation that
was the most comparable or even better than the manual digitization. Figure 7 shows the accuracy
plotted against the probability threshold for two test images, respectively. The threshold leading to the
highest accuracy (mean value for the two test images) was 0.5. However, this threshold can be changed
depending on whether we can afford to miss any fallen trees or whether the overall performance needs
to be maximized, as chosen in this study. Figure 8 shows the prediction results of one test image for a
threshold of 0.5 overlain on the ground-truth. Once the probability threshold was fixed, the trained
network performed as a binary classifier for each pixel.
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Figure 6. (A) Prediction results on one test image compared to the ground labels shown in (B).

Figure 7. Accuracy obtained for the two test images of a size of 10,000 × 10,000 for thresholds from
0.1–0.95 with steps of 0.05.
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Figure 8. Classification results for one test image (threshold = 0.5) superimposed on the ground labels.
The overall accuracy for this threshold was 92%.

The algorithm achieved an accuracy of 92%, and the sum of the non-detected damaged areas
amounted to 0.1 km2, which represented 13% of the manually-delineated damaged area. Classification
results were also visually compared to manually-delineated labels. Most non-detected damaged forest
areas were covered with shadow, a common problem in remote sensing (Figure 9A). The training
dataset only contained a few shadowed areas to learn from, and therefore, these patterns were
not properly recognized by the neural network. This problem could be overcome in the future by
incorporating more labeled shadowed areas in the training dataset. However, in shadowed areas,
where no information can be obtained from the aerial photographs, field observations would be
necessary to supplement the aerial photo interpretation. Furthermore, we found some mislabeled data
in the reference data where the algorithm outperformed the human mapping. The labeling mistakes
included non-damaged forest areas that were labeled as damaged and damaged areas that were not
labeled as such. Examples of mislabeled data are shown in Figure 9.

This indicated that the overall accuracy and intersection over union underestimated the model’s
performance. Figure 9B shows non-damaged areas that were mislabeled as damaged, but were correctly
labeled by the neural network. Figure 9C presents areas with fallen trees that were not contained
in the labels created by LWF, but were correctly labeled by the neural network. The results of our
model were used on a newly-configured mobile application based on Collector for ArcGIS that allows
data collection in the field. Thus, our proposed method provided a streamlined workflow for forestry
departments to manage windthrow in a fast and efficient way. The classification results on the same
test dataset obtained for the SVM classifier and the RF classifier were 75.2% and 72.1%, respectively.
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Figure 9. (A) Example of shadowed area, not detected by the neural network. (B) Example of the
exaggerated outline of the damaged area in the ground-truth. (C) Example of damaged small areas not
labeled in the ground-truth. The Red lines delineate the ground-truth label, and the blue lines delineate
the detection results.

4. Discussion

We developed a novel approach for storm damage assessment based on deep learning and
high-resolution airborne remote sensing data. The presented method automatized the process of
windthrow delineation within a GIS environment.

4.1. Comparison to Other Forest Damage Assessment Approaches

In comparison to traditional machine learning algorithms (e.g., SVMs, decision trees), CNNs have
the advantage of exploiting the correlation between neighboring pixels, which is crucial information in
most computer vision tasks. Furthermore, traditional machine learning algorithms such as SVMs can
only be trained on relatively small datasets, as the computation complexity increases with the number
of samples [34], and hence, they have a worse generalization ability than deep neural networks, which
can fit large amounts of data and perform well on unseen data. This is highlighted by our results, which
gave an accuracy of 92% for the U-Net architecture in comparison to 75% and 72% for a pixel-based
classification based on an SVM and RF classifier. However, also using traditional machine learning,
the work in [7] obtained an accuracy of over 90%. They proposed a method for detecting windthrow
areas larger than 0.5 ha using Rapid Eye data in a two-step approach: first, an object-based approach
was done based on a large-scale mean shift algorithm, and a random forest classifier that detects
damaged areas of an area ≥0.5 ha; and then, in a second step, further damage was detected at the pixel
level. Their accuracy was comparable to our deep learning results, but required more manual tuning.
The work in [35] also developed a new approach for identifying storm damage, as well as estimating
the severity based on the normalized difference infrared index (NDII) and other indices applied to
MODIS data. This approach was designed for rapid large-scale assessment, while we focused on
automating detailed delineation of damaged areas. Including spectral characteristics, however, might
be an interesting extension of the present study.

Besides optical data, radar and ALS data are widely used in forestry. The approach presented
in [36], for example, used X-band COSMO-SkyMed Stripmap SAR images to detect changes in forests.
The authors used the same approach on optical sensors and compared the results. The accuracies
obtained were slightly above 80% for areas ranging between 0.1 ha and 0.5 ha and around 50% for areas
greater than 0.01 ha. Compared to our approach, the proposed method, even though achieving good
results, required two images (before and after the storm) and several manual steps such as an analysis
for the selection of suitable bands or masking of non-forest areas, making it less scalable and relying on
expert input and processing. Thus, there was a trade-off between full automation using deep learning
and the expert-based approach, which allowed a better understanding about how parameters were
derived or even deriving physical properties, as is often the case in forest applications. Finally, the work
in [37] proposed a method for rapid detection of windthrown areas in forests using C-band Sentinel-1
SAR data. Based on the difference in backscatter quantified by the Eriksson windthrow index [38]
between two images acquired before and after the storm, an accuracy of 85% was achieved for areas
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greater than 0.5 ha. As these results also required choosing optimal parameters, the transferability of
the method was somewhat more complex compared to the pretrained U-Net architecture, which can be
applied without tuning additional parameters specific to the area of interest. An in-depth investigation
of the performance of the proposed architecture on further datasets would be an interesting future
project, especially with respect to the power of generalization, which can be increased by different data
augmentation techniques.

4.2. Limitations of This Study

In general, the limitations of deep learning in comparison to other machine learning methods
are the requirement of large and high-quality training data, as well as hardware limitations related to
GPU computing power. The most notable advantage of deep learning is the grade of automatization
and a high potential to generalize when using large amounts of representative training data, which
might, however, not always be available; especially with respect to ground-truth labels that might be
scarce or not exist at all.. Furthermore, the black-box nature makes these algorithms a good choice for
classification as suggested in this study, but a challenge for modeling physical properties, as is often
the case in forestry. This case study relied on high-resolution orthophotos with 20-cm spatial resolution
obtained from an aerial survey. The great advantage of these data is that many details can be detected.
However, if very large areas were affected by a storm, it might be too time consuming to conduct
aerial surveys. In such cases, optical satellite data with a high temporal resolution and wide regional
coverage should be considered as an alternative, even though satellite data usually have a lower spatial
resolution. Thus, the developed method of this study could be tested in a future project to analyze the
advantages and disadvantages of different optical satellite datasets with different spatial, temporal,
and spectral resolution. Our method was successfully applied in this case study to delineate damaged
forest areas caused by a summer storm, i.e., during leaf-on conditions. In a follow-up project, it still
needs to be tested how accurately the method can detect storm damages during different phenological
stages, especially for a winter storm with leaf-off conditions. During winter time, the low position
of the Sun can cause more shadowed areas, especially in project areas with large height differences.
Moreover, for a winter storm, it will be necessary to analyze how accurate broadleaved forest stands
without foliage can be separated from the damaged areas. This classification would require additional
training data.

5. Conclusions and Outlook

We presented an AI-based approach for automatizing the laborious task of determining the
damaged areas in large forest areas while reducing processing times significantly. The integration
of a modified U-Net architecture into the ArcGIS Platform offered a streamlined workflow for forest
departments, and the results of the trained neural network can be directly used in the field on mobile
devices, facilitating disaster management. The achieved accuracy of 92% highlights the potential of
deep learning for forest-related remote sensing tasks. In a follow-up study, we are planning to train a
similar architecture on Planet Dove data that are available more rapidly after the storm, but at a lower
spatial resolution and a low signal-to-noise ratio, to provide a rapid overview of the situation prior to
a more detailed mapping.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network
GPU Graphics processing unit
IoU Intersection over union
ReLU Rectified linear unit
SeLU Scaled exponential linear unit
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