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Abstract: The use of light detection and ranging (LiDAR) techniques for recording and analyzing tree
and forest structural variables shows strong promise for improving established hyperspectral-based
tree species classifications; however, previous multi-sensoral projects were often limited by
error resulting from seasonal or flight path differences. The National Aeronautics and Space
Administration (NASA) Goddard’s LiDAR, hyperspectral, and thermal imager (G-LiHT) is now
providing co-registered data on experimental forests in the United States, which are associated
with established ground truths from existing forest plots. Free, user-friendly machine learning
applications like the Orange Data Mining Extension for Python recently simplified the process
of combining datasets, handling variable redundancy and noise, and reducing dimensionality in
remotely sensed datasets. Neural networks, CN2 rules, and support vector machine methods are
used here to achieve a final classification accuracy of 67% for dominant tree species in experimental
plots of Howland Experimental Forest, a mixed coniferous–deciduous forest with ten dominant
tree species, and 59% for plots in Penobscot Experimental Forest, a mixed coniferous–deciduous
forest with 15 dominant tree species. These accuracies are higher than those produced using LiDAR
or hyperspectral datasets separately, suggesting that combined spectral and structural data have a
greater richness of complementary information than either dataset alone. Using greatly simplified
datasets created by our dimensionality reduction methodology, machine learner performance remains
comparable or higher to that using the full dataset. Across forests, the identification of shared
structural and spectral variables suggests that this methodology can successfully identify parameters
with high explanatory power for differentiating among tree species, and opens the possibility of
addressing large-scale forestry questions using optimized remote sensing workflows.

Keywords: remote sensing; LiDAR; hyperspectral reflectance; vegetation index; machine learning;
experimental forest; NASA G-LiHT; dimensionality reduction

1. Introduction

The use of geographic information systems (GIS) and remote sensing techniques for forestry
applications has been a major concern in the field of geography since its creation, and a technical
revolution in the last three decades allowed for increasingly sophisticated analysis of forest structure,
composition, and dynamics. Although optical, multispectral, and hyperspectral remote-sensing
techniques are traditionally used to gather data on forests, the incorporation of data on tree and
canopy structure can improve analysis of forest biomass and health, carbon sequestration potential,
and range, potentially even at the species level [1]. Light detection and ranging (LiDAR) technologies
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are increasingly being employed to collect data on structural features of tree canopies and branching
patterns, forest structure and succession, and even estimates of tree physiological metrics such as leaf
area index [2]. The use of LiDAR sensors, usually on airborne platforms such as small airplanes, also
proved to be a boon to commercial forest resource monitoring and valuation. The ability to accurately
estimate the height and other forest parameters, such as basal area or timber volume, with a single
flyover greatly simplified the valuation of forests grown for timber [3].

Changing weather patterns will reshape the ranges of species worldwide, and the ability to
monitor the changes in community dynamics of trees and other plants, which play a fundamental role
in overall ecosystem functioning and composition, will be key in understanding trends in terrestrial
biomes and in creating effective strategies for conservation, resilience, and human livelihoods [4].
Whether a forest is assessed for conservation or commercial purposes, one key element of forest systems
remains difficult to quantify; individual LiDAR data points have little to say about the species identity
of a given tree. Nonetheless, tree species differ in their canopy architecture, overall shape factor, and
foliage type; such morphological characteristics were used as the basis for LiDAR-based differentiation
between deciduous and coniferous trees [5] and for more detailed species-level classifications [6–8].
When collecting LiDAR data, a single laser pulse may be reflected off multiple canopy structures
and recorded as several returns with different light intensities [9]. Full-waveform LiDAR datasets
contain information on these multiple within-canopy echoes and, thus, provide robust information on
complex canopy architecture and forest composition. In addition to species-level classification, such
datasets were used to estimate additional forest biomass parameters [10]. However, discrete-return
LiDAR data were found to provide additional information on forest structure beyond that provided
by full-waveform LiDAR data [11], and can offer valuable insight into tree and forest canopies,
for example, by using summary metrics calculated by binning a LiDAR point cloud into percentiles,
deciles, or other values summarizing individual ground and canopy returns [12]. Similar structural
indices were used with success when surveying vegetation biodiversity [13], and it is, thus, possible to
take advantage of high-density LiDAR data to examine branching patterns and other architectural
data on a single-tree or tree-stand basis, and to relate this to the species of individual trees or of the
predominant species in a stand.

The structural information provided by discrete-return LiDAR was used with success to
characterize species richness [14] and predict species composition of individual stands [15] in tropical
forests, and to differentiate among tree species or taxonomic groups [16–18]. Classifications attempted
on forests with only a few tree species [19] and those using a high density of LiDAR points [20–22]
have achieved high accuracies; however, the utility of LiDAR summary metrics was more limited
when attempting to extend similar classifications to a larger number of tree species [23]. Additionally,
debate continues over the optimal resolution of LiDAR data in comparison to individual tree crown
size. Some researchers warned against trying to create species-level maps with data coarser than the
individual tree level [24], although others asserted that there is unavoidable within-species variability
due to an individual-tree signature that explains up 65% of intraspecies variability [25]. While some
researchers had success in performing individual tree detection (ITD) to closely approximate the
location and size of trees and tree crowns [26,27], ITD remains a field with uncertainties that will need
to be addressed before it can be implemented for robust forest inventory or valuation [28]. Until such
methods are perfected, it remains prudent to work at the scale of aggregated tree stands, plots, or
groups for large-scale forest inventory or classification when using discrete-return LiDAR data.

In addition to the structural information offered by LiDAR datasets, remote tree species
classifications may take advantage of the differential reflectance of different wavelengths of light within
heterogeneous forest canopies. Multispectral [29,30] and optical [31,32] datasets were previously used
in combination with LiDAR for species-level classifications, and hyperspectral data in particular
were used for tree species classification because of the differences in light reflectance off leaves
with species-specific pigment concentrations [33]. Using a similar principle, recently developed
multispectral LiDAR systems can be used to gather wavelength-dependent structural information,
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and were used for tree species identification with higher accuracies than single-wavelength LiDAR
data [34–37]. The use of LiDAR data to identify gaps in the tree canopy also bolstered the accuracy
of some hyperspectral classifications [38–40]. Fused hyperspectral and LiDAR datasets also show
promise for ecological problems other than species classification, including biomass estimation [41],
habitat characterization [42], and forest fire risk evaluation [43]. Very few studies (with the exception
of Reference [44]) had the opportunity to use a co-registered hyperspectral and LiDAR dataset.

Recently available sensors like the National Aeronautics and Space Administration (NASA)
Goddard’s LiDAR, hyperspectral, and thermal (G-LiHT) imager are helping to improve the utility
and viability of projects combining LiDAR and hyperspectral data by providing co-registered data on
established experimental forests [45]. These G-LiHT flights provide a double benefit for investigating
advances in the remote sensing of vegetation. Firstly, co-registered data are historically a rarity in
multi-sensoral projects, but are desirable because of the potential for reducing error resulting from
seasonal or flight path differences. Secondly, the use of experimental forests as ground truth areas
for remote-sensing projects is recommended because of the existing knowledge on the management
of such areas and the possibility for connecting results of remote-sensing analyses to other existing
research [46].

Datasets collected by G-LiHT also provide an excellent opportunity for evaluating new analytical
methods. Remotely sensed datasets are often constrained or complicated by variable redundancy
and noise, and traditional dimensionality reduction techniques require the use of computationally
intense and expensive software programs. Additionally, most remotely sensed datasets, particularly
hyperspectral ones, are very large. Given that only a fixed number of ground-truth sites or pixels
typically exist for a particular project, this dimensionality leads to problems such as the Hughes
phenomenon, where hyperspectral data on a forest for which the researcher has data on only a small
number of ground truth areas might be more redundant than insightful [47]. For this reason, machine
learning and data mining techniques for dimensionality reduction and pattern finding are often
employed in species classification studies, as well as for predictive models of species distributions or
habitat suitability [46,48–52], and they show strong promise for use in future work.

Large datasets like those collected by G-LiHT represent a classic case of the Hughes phenomenon
and, therefore, an ideal opportunity to assess dimensionality reduction techniques. Previous
researchers recommended techniques such as data filtering (retaining only a subset of a dataset
for analysis, such as by removing incomplete cases or irrelevant variables), factor analysis, or
separability indices used to reduce a large dataset to only the most informative subset, with the
goal of improving the efficiency of machine learners and reducing correlation among variables used for
classifier training [53]. Variables may be selected using parametric [54] or nonparametric [55] statistical
methods, as well as more complex statistical methods aimed at variable selection, grouping [56],
or iterative inter-comparisons of potential variable combinations for accurate and parsimonious model
creation [57,58]. Additionally, machine learning methods, including random forests and support
vector machines, were used as tools for pattern recognition and variable selection when working
with large datasets [59,60]. It is becoming increasingly easy to implement such techniques; free,
user-friendly data mining and machine learning applications like the Orange Data Mining Extension
for Python (Orange) [61] recently simplified the process of combining and analyzing remotely sensed
datasets for researchers at all levels. Thus, it is clear that there exist datasets and techniques that are
ideally suited to respond to a need for optimized dimensionality reduction techniques, particularly
as the collection of large datasets is becoming increasingly common in forest ecosystems. Here, we
describe a methodology for assessing a suite of LiDAR and optical metrics refined by machine learning
techniques to perform species-level tree classifications that optimize the contribution of both structural
and spectral information.
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2. Materials and Methods

2.1. Data Collection

The G-LiHT imager is composed of several compatible off-the-shelf navigation, spectrometry,
imaging, and laser sensor products [45]. Flyovers relevant to this study were conducted in June
2012 and all data can be found in the G-LiHT data archive at ftp://fusionftp.gsfc.nasa.gov/G-LiHT.
Discrete-return LiDAR data, originally collected at a density of six returns per square meter, are
available in raster format, in which returns are aggregated to 13-m2 pixels (see Section 2.2 and Table 1
for more details); hyperspectral data are available at a 1-m2 resolution. In total, 190 individual variables
are available as part of the G-LiHT outputs for each forest (32 LiDAR metrics, 114 hyperspectral
reflectance bands, and 44 vegetation indices).

Table 1. Full list of light detection and ranging (LiDAR) metrics and abbreviations.

Name and Description of Metric Units Abbreviation

Mean absolute deviation = mean (|height −mean height|) of tree returns Meters AAD
Canopy relief ratio = ((mean −min)/(max −min)) of tree returns Unitless CRR

Density deciles of tree returns (number of returns in 10% height bins/total LiDAR returns) Fraction D0–D9
Fraction of first return pulses intercepted by tree Fraction FCover

Fraction of all returns classified as tree Fraction FractAll
Interquartile range (P75–P25) of tree returns Meters IQR

Kurtosis of tree return heights Meters Kurt
Median absolute deviation = median (|height −median height|) of tree returns Meters MAD

Mean of tree return heights Meters Mean
Height percentiles (10% increments) of tree returns Meters P10–P100

Quadratic mean of tree return heights Meters QMean
Skewness of tree return heights Meters Skew

Standard deviation of tree return heights Meters StDev
Vertical distribution ratio = (P100 − P50)/P100 Unitless VDR

To complement G-LiHT data, NASA-funded field campaigns to Penobscot Experimental Forest
and Howland Experimental Forest in Maine, United States of America (USA) in the summer of 2009
surveyed trees in the same experimental forests as the flyovers, generating species-level information
on trees in ground truth areas. Howland Experimental Forest is a 225-ha forest with a centroid at
45◦12′ north (N), 68◦44′ west (W). Penobscot Experimental Forest is an approximately 1578-ha forest
with a centroid at 44◦85′20′ ′N, 68◦62′00′ ′W. Both sites are mixed coniferous–deciduous, predominantly
evergreen forests. Data were collected in forest plots (11 plots in Howland Experimental Forest and
12 plots in Penobscot Experimental Forest) of 50 m× 200 m, each of which was divided into 16 subplots
of approximately 25 m × 25 m. Data on the species, tree height, and diameter at breast height (DBH)
were recorded for each tree above 10 cm in DBH in these plots [62].

2.2. Data Preparation and Exploration

Binned point clouds generated by G-LiHT’s scanning LiDAR sensor were processed into standard
metrics (as described in previous publications [63,64]; definitions in Table 1), available as raster files
with 13-m2 resolution.

Available hyperspectral data include at-sensor reflectance data covering a spectrum between
418 and 918 nm, with an approximately 4.4-nm interval between bands for a total of 114 individual
bands. A total of 44 different vegetation indices calculated from these reflectance measurements are
also available (a select list for those discussed in this article are shown in Table 2).

Table 2. Select list of hyperspectral vegetation indices and abbreviations used in final analyses.

Name of Vegetation Index Abbreviation Reference

Anthocyanin reflectance index 1 ARI1 [65]
Anthocyanin reflectance index 2 ARI2 [65]
Carotenoid reflectance index 2 CRI2 [66]

ftp://fusionftp.gsfc.nasa.gov/G-LiHT
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Table 2. Cont.

Name of Vegetation Index Abbreviation Reference

Datt 1 DATT1 [67]
Datt 2 DATT2 [67]

Difference vegetation index DVI [68]
Greenness index GI [69]

Gitelson and Merzlyak 1 GM1 [65]
Gitelson and Merzlyak 2 GM2 [65]

Maccioni MAC [70]
Modified simple ratio MSR [71]

Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index MTCI [72]
Modified triangular vegetation index MTVI [73]

Modified triangular vegetation index 2 MTVI2 [73]
Modified red edge normalized difference vegetation index MRENDVI [74]

Normalized difference vegetation index NDVI [75]
Normalized phaeophytinization index NPQI [76]

Photochemical reflectance index PRI [77]
Renormalized difference vegetation index RDVI [78]

Red edge inflection point REIP [79]
Red green ratio index RGRI [80]

Structure insensitive pigment index SIPI [81]
Vogelmann VOG [82]

To prepare these available data for analysis, a dominant species for each whole plot and subplot
was determined and associated with subplot polygons (Table 3). Howland Experimental Forest was
largely undisturbed in the 140 years since its establishment [83]. In Penobscot Experimental Forest,
plots used in this analysis were outside areas used in cutting and forest management studies [84],
and only minor disturbance from spruce budworm was reported [85]. Since forest age and tree size
distributions can be assumed to be relatively stable in these areas, and because trees under 10 cm in
DBH were already removed from analysis, the species with the greatest number of individual trees
(stem count) was chosen as representative of the subplot-level dominant species. In four cases of a tie
between two or more species, the species that was dominant in a neighboring subplot or throughout
the entire plot was chosen.

Table 3. Tree species abbreviations. Species dominant in one or more subplots in either forest are
denoted with a letter indicating the forest name: H for Howland Experimental Forest and P for
Penobscot Experimental Forest. Species not followed by a letter are not the dominant species in any
subplot from either forest.

Abbreviation Common and Latin Names Forest Where Dominant

ABBA Balsam fir (Abies balsamea) H, P
ACRU Red maple (Acer rubrum) H, P
ACSA Silver maple (Acer saccharinum) P
ACSP Mountain maple (Acer spicatum) P
BEAL Yellow birch (Betula alleghaniensis) P
BEPA Paper birch (Betula papyrifera) P
BEPO Gray birch (Betula populifolia) P
FAGR American beech (Fagus grandifolia) H, P
FRAM White ash (Fraxinus americana) H
FRPE Green ash (Fraxinus pennsylvanica)
LALA Tamarack (Larix laricina)
OSVI Eastern hophornbeam (Ostrya virginiana)
PIAB Norway spruce (Picea abies) H
PIMA Black spruce (Picea mariana) H
PIRE Red pine (Pinus resinosa) P
PIRU Red spruce (Picea rubens) P
PIST Eastern white pine (Pinus strobus) H, P

POBA Balsam poplar (Populus balsamifera)
POGR Bigtooth aspen (Populus grandidentata) P
POTR Quaking aspen (Populus tremuloides) P
QURU Northern red oak (Quercus rubra)
TIAM American basswood (Tilia americana)
THOC Northern white cedar (Thuja occidentalis) H, P
TSCA Eastern hemlock (Tsuga canadensis) H, P
ULAM American elm (Ulmus americana)
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2.3. Machine Learning Methods, Accuracy, and Validation

Numerous methods for machine learning are available, spanning a wide range of data analysis
techniques. Overall, the methods used here can be broken down into classification tree methods
(decision trees, random forest), methods based on grouping and separability (support vector machines
(SVM), k-nearest neighbors), and methods based on rule creation and application (CN2 rules, naïve
Bayes, neural networks). The Orange Data Mining Extension for Python, version 2.7 [61] was used
to test each of the above classification methods (Figure 1a). Classifier performance was assessed
by calculating overall classification accuracy (CA), area under the curve of the receiving operator
characteristic (AUC-ROC) [86], Brier scores [87], and Cohen’s kappa coefficient [88,89] for each
combination. Orange automatically generates and reports AUC-ROC values and Brier scores when
machine learning classifiers are run, as well as a confusion matrix and classification accuracy value.
Custom Python code was written to calculate the kappa coefficient from the confusion matrix.
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Figure 1. Sample Orange workflow for comparing machine learning methods. In the exploratory
analysis step (a), all available machine learning methods were used in combination with the full suite
of available data. In the simplified analysis (b), only the two best-performing machine learners were
used on a simplified list of input variables, one example of which is shown here.

As a baseline for comparison to the explanatory power of simplified datasets, all machine learners
described above were tested on full datasets consisting of 32 LiDAR metrics, 114 hyperspectral
bands, 44 vegetation indices, or all 190 variables. After testing, the two best-performing machine
learners, as determined by highest classification accuracy, AUC-ROC, Brier score, and kappa coefficient,
were selected for use in further analyses. In all cases, classification accuracies were determined by
applying each trained machine learner to subsets of input data with known dominant species identity.
Specifically, cross-validation resampling, in which data on each dominant species serve as training
data in one of multiple rounds of machine learning by each classifier, was used to generate confusion
matrices from which each overall classification accuracy was calculated.

For use in combination with the two best machine learning techniques, the list of input variables
was also reduced to a simplified list, optimized to include the most informative variables available
for each forest. The classification tree run on each dataset during the initial exploratory analysis was
examined using the Tree Viewer widget in Orange. These trees were used to construct lists of variables
that represent informative breaks in the dataset. LiDAR metrics, vegetation indices, or reflectance
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bands found in the first five levels of classification tree nodes were compiled to create simplified lists.
Lists were also made from the first ten levels of classification tree nodes, but these longer lists were
found to be no more informative than those from the first five levels; thus, they are not discussed in
the results section.

Variables identified from classification tree breaks were then used to construct five simplified lists
of input data per forest. The classification tree run on the reflectance bands alone was used to construct
a simplified list of select reflectance bands. Lists were constructed in the same way from classification
trees run on the full list of vegetation indices to create a simplified vegetation indices list and on the
entire dataset of 190 LiDAR and hyperspectral variables to create a simplified list containing variables
of all data types. In the case of the LiDAR metrics, lists were made for individual forests, and a common
list of metrics shared across forests was also made in an attempt to identify some generalizable aspects
of LiDAR data that may have strong explanatory power in other forests (Table 4). Using only these
simplified lists of metrics as inputs, the two best classification and resampling methods as determined
above were rerun and reassessed on the basis of CA, AUC-ROC, Brier score, and kappa coefficient
(Figure 1b).

Table 4. Simplified lists of machine learning inputs. Variables used in nodes within the first five levels
of classification trees constructed on the full dataset were added to simplified lists serving as inputs for
further machine learning analyses. Metrics used to construct the common list of LiDAR metrics are
highlighted in gray to indicate shared status across forests.

Penobscot Experimental Forest Howland Experimental Forest

LiDAR
Metrics Refl. Bands Veg. Indices LiDAR +

Refl. + VIs
LiDAR
Metrics Refl. Bands Veg. Indices LiDAR +

Refl. + VIs

D0 426.8 nm ARI1 558.8 nm D3 426.8 nm ARI1 514.8 nm
D2 484.0 nm ARI2 563.2 nm D5 497.2 nm ARI2 563.2 nm
D9 545.6 nm DATT1 576.4 nm D6 528.0 nm CRI2 DATT2

FCover 572.0 nm DVI 594.0 nm D9 576.4 nm DATT2 FractAll
FractAll 580.8 nm GM1 ARI2 FCover 580.8 nm GI GM1
Kurtosis 602.8 nm MAC CRI2 FractAll 651.2 nm GM2 GM2

Mean 655.6 nm MTCI D4 P50 673.2 nm PRI Mean
P10 660.0 nm MTVI D6 P60 686.4 nm RDVI MTCI
P40 673.2 nm MTVI2 GM1 P90 690.8 nm RGRI P60
P50 800.8 nm MRENDVI MSR P100 721.6 nm SIPI P70
P80 888.8 nm NDVI MTCI 730.4 nm PRI
P100 906.4 nm NPQI NPQI 761.2 nm REIP

StDev 915.2 nm PRI P20 792.0 nm RGRI
REIP P100 862.4 nm SIPI
SIPI RDVI 906.4 nm VOG

StDev 910.8 nm

In order to compare this method of dimensionality reduction to an established statistical technique,
principal component analysis (PCA) was also performed on a dataset constructed from a raster stack
of all hyperspectral reflectance bands, using the Forward PC Rotation function in ENVI Classic. PCA
was performed on this dataset only because of missing values in LiDAR metric rasters and because
of the difficulty of interpretation of principle components created from all vegetation indices, in
which mathematical transformations were already applied to reflectance data. The resulting principal
components with eigenvalues greater than one (10 principal components for each forest) were exported
as raster files and used as inputs to machine learning classifiers as described above for other datasets.

3. Results

An initial assessment of species-specific structure shows that individual tree DBH and height
measurements in Howland and Penobscot Experimental Forests vary in absolute magnitude and
in degree of within-species variability (Figure 2). This variability is unsurprising given that these
biometry data are also comparing across tree ages and growing conditions. Nonetheless, interspecies
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variability in these parameters illustrates key characteristics of tree community composition at each
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Figure 2. Plots of individual tree diameters at breast height by species. Summary of diameter at breast
height data (a) and individual tree height data (b) for on trees in experimental plots in Howland
Experimental Forest and Penobscot Experimental Forest. Dots represent data on individual trees;
overlaid box-and-whisker plots summarize distribution of values by species for each forest.

Results of our initial exploratory analysis show that, in both forests, use of the full dataset
containing both spectral and structural data resulted in higher classification accuracies, 0.6371 for
Howland Experimental Forest and 0.5914 for Penobscot Experimental Forest, than using any of the
three individual data types alone (Figure 3). Across forests, using LiDAR data alone resulted in slightly
lower classification accuracies than either type of hyperspectral data, and the use of vegetation indices
as machine learning inputs resulted in higher accuracies than using raw reflectance data. Indeed,
classification accuracies achieved using vegetation indices were nearly equal to that from the full
hyperspectral and LiDAR dataset in Howland Experimental Forest (CA = 0.6367) (Figure 3). Although
the performance of individual machine learning techniques varied by data type and forest, k-nearest
neighbors, random forest, and neural network classifiers tended to outperform other options. In both
forests, all machine learning techniques produced higher accuracies when run with cross-validation
resampling; only these results are shown in Figures 3 and 4. Finally, classification accuracies from data
on Howland Experimental Forest (maximum CA = 0.6371) were higher across the board than those
from Penobscot Experimental Forest (maximum CA = 0.5914).
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Figure 3. Comparison of resampling techniques and machine learning methods using complete lists
of metrics. Figure shows classification accuracies achieved by machine learners run on full datasets
from Howland Experimental Forest (a) and Penobscot Experimental Forest (b). From left to right,
columns represent classification accuracies produced with light detection and ranging (LiDAR) data,
hyperspectral reflectance data, vegetation indices (VIs) calculated from these reflectance data, and a
combined dataset of LiDAR and both types of hyperspectral data.

Table 4 shows the simplified lists of inputs used for the second round of machine learning
analysis. Dimensionality is greatly reduced as compared to the full dataset; this is particularly evident
in the case of the hyperspectral reflectance bands, where only 13 bands (Howland Experimental
Forest) or 16 bands (Penobscot Experimental Forest) were retained, representing an approximately 90%
reduction in the number of input variables. In the case of the reflectance only dataset, selected bands
covered the full range of available wavelengths. A wide range of vegetation indices optimized for
chlorophylls, cartenoids, anthocyanins, and xanthophylls were also identified as important variables
for interspecies distinction. The LiDAR metrics identified by this method include both FCover, a
general measure of forest density and extent, and Fract_All, which quantifies the relative number of
multiple LiDAR collisions with vegetation due to within-canopy structure, and height percentile and
density decile parameters that provide detailed information on vertical distribution of canopy elements.
Five paramters, D9, FCover, FractAll, P50, and P100, were selected in both forests, suggesting that this
methodology can be used to identify key structural characteristics of species, as well as pigment-related
reflectance differences.

The use of the combined list of hyperspectral and LiDAR inputs yielded higher classification
accuracies (Figure 4) and kappa coefficients (Figure 5) than any individual dataset alone, demonstrating
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that LiDAR and hyperspectral datasets contain complementary information. When comparing between
the performance of machine learners run with inputs from individual datasets, use of the simplified
lists of vegetation indices also resulted in high classification accuracies. Machine learners trained on a
simplified list of reflectance bands outperformed those trained on the principal components created
from the reflectance dataset, demonstrating that dimensionality can be reduced with our methodology
while retaining superior separability among species. In Figure 4, the greatest classification accuracies
from the exploratory analysis are overlaid in gray on results from analyses on the simplified lists.
Although all six available machine learning techniques were tried on these PCA datasets as in the
exploratory analysis step, results from only the two with the highest classification accuracy or kappa
coefficient results are shown in Figures 4 and 5 for ease of comparison. For Howland Experimental
Forest, classification accuracies improved or remained comparable to those achieved using the full
dataset, even with the significant dimensionality reduction performed here. In data from Penobscot
Experimental Forest, simplified lists were slightly outperformed by runs using the full dataset in all
cases. Nevertheless, the similar or, in some cases, improved performance of machine learners run on a
significantly smaller dataset implies that our selection methodology is able to produce a list of inputs
optimized for high separability among tree species.
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4. Discussion

Results from combined LiDAR, vegetation index, and hyperspectral reflectance datasets across
forests suggest that the combination of spectral and structural information is richer in detail than
any individual dataset alone. This improvement is in line with other studies that found a similar
effect [20,90]. The fact that the incorporation of LiDAR data improved the hyperspectral-based
classifications of tree species, particularly at Howland Experimental Forest, speaks to the utility
of machine learning techniques in solving problems like this one. Some researchers previously
postulated that LiDAR datasets do not suffer as much from the issues of ill-posed problems and
very high dimensionality and are, therefore, better suited to classification techniques that would
not necessarily be optimal for other remote-sensing work [91]. This, along with our dimensionality
reduction methodology, may account for some of the differences between the results described here
and other previously published studies that did not find improvements in classification accuracy when
adding LiDAR data to hyperspectral datasets [39,92].

Nonetheless, there remain some limitations to the analysis as presented here. Firstly, the inclusion
of LiDAR metrics, such as the mean and standard deviation rasters, which are necessarily specific to the
tree heights in the forest on which they were calculated, may limit the generalizability of this analysis.
Secondly, this analysis necessitated use of aggregated data. While this is not a constraint that will
necessarily apply to all future studies, aggregation of data to a subplot level was required in this case
because of the lack of data on the coordinates of individual trees within either forest. The aggregation
of this biometry data by subplot-level stem count is just one of several ways in which data could
have been meaningfully summarized [93]. Although initial exploration of aggregation methods
revealed that the majority of subplots would be assigned the same dominant species regardless of
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method, this choice necessarily affects the exact classification accuracies achieved in this analysis.
Additionally, any aggregation means that some detail is necessarily lost, particularly from the field
campaign dataset, which provided data on height and DBH at an individual tree level, and from the
hyperspectral datasets. Within each subplot, several hundred 1-m2 pixels were averaged together
during the aggregation process, meaning that a great deal of detail on differential reflectance from
within individual tree crowns could not be used.

This is a problem that was confronted by numerous researchers in the past, since G-LiHT is
certainly not the only dataset to include data aggregated to different sizes or to rely on ground-truth
data with some limitations. Some authors argued that attempts to identify or classify species at
anything above the individual tree level will be met with difficulty [24], but other researchers
previously published classifications with up to 90% on tree stands [94]. In the case of the datasets
used here, aggregation to a mean subplot value necessarily creates some error due to loss of detail and
because of the contaminating effect of non-dominant species’ spectral signatures, as well as any visible
shrub understory or bare ground, for which it was impossible to fully account in this classification.
Nonetheless, a classification accuracy of over 67% demonstrates again that such datasets can still be
used to generate reliable results, an encouraging result given that previous researchers reported stand
effects that explain a similar amount of variance in LiDAR returns, as with species identity [25].

Although the combination of spectral and structural data in this and future analyses will likely
always necessitate data aggregation or spatial mismatch, our analysis shows that the benefits of dataset
fusion outweigh the costs. Both simplified lists of inputs combining data from all three data types
include an intriguing mix of variables. Across forests, these simplified lists contain numerous variables
related to leaf greenness and pigment concentrations. All hyperspectral reflectance bands selected
for the simplified list containing all data types fall between 500 and 600 nm, the green portion of the
spectrum. Similarly, the majority of vegetation indices included in the simplified lists were related to
anthocyanin, carotenoid, and chlorophyll concentrations, either directly or as a measure of the red edge
of the vegetation reflectance spectrum. As a complement, the LiDAR metrics included in these lists
include parameters representing broad structural features within forest canopies, including the P50 and
P100 parameters widely used to quantify forest biomass and height in LiDAR inventory studies [95],
as well as the Fract_All and density parameters that provide insight into crown and canopy structure.
The consistent selection of these parameters across sites indicates that the methodology used here is
capable of identifying characteristics of vegetation that are both fundamentally important and useful
in distinguishing between tree species within a single region of forest canopy.

The selection of particular machine learners over others is also a key factor in determining the
success of tree species classifications. In this analysis, neural networks, k-nearest neighbors, and
random forest methods generally outperformed the others available through Orange. Historically,
support vector machines were used with success on remotely sensed datasets, including in other
recent attempts at tree species classification [37]. This is likely due to the fact that support vector
machines (SVM) are designed to handle datasets of very high dimensionality, making them the
established standard for hyperspectral remote-sensing work [96]. However, on our datasets with
reduced dimensionality, the strengths of other machine learning techniques may have led to their
superior performance. Early work on the use of neural networks highlighted their suitability for
multisource datasets [97], and the entire neural network principle is based on the capacity of each
neuron in the network to shift and change as the network handles more or new data [98]. Similarly,
the CN2 rules algorithm was invented to create rules that can be applied to data points that fit well,
but imperfectly, with known classes, rather than excluding all imperfect matches [99]. The benefit of
such flexibility is easily seen when considering the variability in growth form and leaf reflectance from
individuals of the same species in a forest, although this analysis by no means confirms this as the
precise reason for the high performance of these machine learning techniques in this analysis. Further
work should explore within-species variability as an important factor in machine learning work for
tree species classification on the landscape scale.
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5. Conclusions

In this analysis, neural networks, k-nearest neighbors, and random forest methods were used
to achieve high classification accuracies when distinguishing among tree species using simplified
and optimized lists of hyperspectral and LiDAR variables. This analysis supports a growing body of
knowledge on the utility of datasets containing complementary structural and spectral information.
Given the potential for land-cover classification using LiDAR data on land surface properties [100],
such fused datasets may better reveal the structure and shadowing effects of canopy gaps or other
irregularities that would otherwise hinder species classifications using spectral data alone. It was
shown that using data on aboveground biomass in conjunction with structural information on forest
structure generated by the laser vegetation imaging sensor (LVIS) improves the ability of models to
predict the size of forest carbon stocks [21]. It now seems that the combination of these two data
types may be able to simultaneously help identify tree species, thereby opening up the possibility
of generating species-specific carbon estimates with a similar combined dataset. Other researchers
looking to the future of remote sensing also highlighted the utility of LiDAR data in addressing
large-scale questions like deforestation and carbon sequestration in whole forests on a species-specific
basis [1,31].

When looking to the future of multi-sensoral and fused datasets, one of the commonly cited
challenges is the development or discovery of analytical methods that can properly integrate data
collected by different sensors or by different projects altogether. While variable reduction techniques
used here showed mixed results depending on the exact set of inputs to each machine learner, it
appears that dimensionality reduction based on classification tree nodes is a technique worth trying on
fused or multisource remote sensing datasets. In summary, the capability of data mining and machine
learning interfaces like Orange to optimize classification workflows is clearly powerful. Further work
should be done to optimize the production of simplified datasets combining information from a
variety of sensors in order to better understand, monitor, and quantify heterogeneously distributed
tree species.
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