Quantitative Evaluation of the Soil Signal Effect on the Correlation between Sentinel-1 Cross Ratio and Snow Depth
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Sentinel-1 Data
2.2.2. Land-Cover Type Product (FROM-GLC10) and Google Earth Images
2.2.3. Meteorological Data
2.2.4. DEM Data
3. Methods
3.1. Pre-Processing of SAR Images
3.2. Correlation between CR and Snow Depth with Reduced Disturbing Factors
3.3. Qualitative Analysis of Soil Signal’s Effect to CR Method
3.3.1. The Rules for Feature Areas Selection
3.3.2. The Daily Timescale Comparison of CR Scattering Performance for Different Feature Areas
3.3.3. The Monthly Timescale Analysis of Variation Characteristics for Different Feature Areas
3.3.4. Analysis of Spatial Variation at the Time of Peak Snow Accumulation
3.4. Evaluation Indexes
3.4.1. Correlation Evaluation
3.4.2. Trend Test
4. Results
4.1. Quantitative Relationship between CR and Snow Depth with Reduced Disturbing Factors
4.2. Qualitative Analysis of Soil Signal’s Effect to CR Method
4.2.1. Scattering Performance of Daily Timescale for Different Feature Areas
4.2.2. CR Temporal Evolution at Monthly Timescale and Trend Analysis
4.2.3. CR Spatial Variation Characteristics at the Time of Peak Snow Accumulation
5. Discussion
5.1. Physical Mechanisms of Different Polarization Modes to Snow Scattering When There Are Few Disturbing Factors
5.2. Uncertainties Affecting the Backscatter
5.2.1. Effect of Soil Surface Freeze-Thaw Cycles
5.2.2. SAR Flight Direction (Ascending and Descending Orbits)
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, G.; Robinson, D.A.; Kang, S. Changing northern hemisphere snow seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Derksen, C.; Fletcher, C.G.; Hall, A. Snow and climate: Feedbacks, drivers, and indices of change. Curr. Clim. Chang. Rep. 2019, 5, 322–333. [Google Scholar] [CrossRef]
- Hall, D.; Sturm, M.; Benson, C.; Chang, A.; Foster, J.; Garbeil, H.; Chacho, E. Passive microwave remote and in situ measurements of artic and subarctic snow covers in Alaska. Remote Sens. Environ. 1991, 38, 161–172. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Li, X. Spatiotemporal Variation of Snow Depth in the Northern Hemisphere from 1992 to 2016. Remote Sens. 2020, 12, 2728. [Google Scholar] [CrossRef]
- Singh, P.; Haritashya, U.K.; Kumar, N. Meteorological study for Gangotri Glacier and its comparison with other high altitude meteorological stations in central Himalayan region. Hydrol. Res. 2007, 38, 59–77. [Google Scholar] [CrossRef]
- Foster, J.L.; Hall, D.K.; Eylander, J.B.; Riggs, G.A.; Nghiem, S.V.; Tedesco, M.; Kim, E.; Montesano, P.M.; Kelly, R.E.; Casey, K.A. A blended global snow product using visible, passive microwave and scatterometer satellite data. Int. J. Remote Sens. 2011, 32, 1371–1395. [Google Scholar] [CrossRef]
- Shaw, T.E.; Gascoin, S.; Mendoza, P.A.; Pellicciotti, F.; McPhee, J. Snow depth patterns in a high mountain Andean catchment from satellite optical tristereoscopic remote sensing. Water Resour. Res. 2020, 56, e2019WR024880. [Google Scholar] [CrossRef]
- Shaw, T.; Deschamps-Berger, C.; Gascoin, S.; Mcphee, J. Monitoring spatial and temporal differences in Andean snow depth derived from satellite tri-stereo photogrammetry. Front. Earth Sci. 2020, 8, 579142. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T.J. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote sensing of snow cover using spaceborne SAR: A review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for snowmelt monitoring by means of sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.-P.; Koskinen, J.; Bojkov, B. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, L.L.; Guan, L. Cross-calibration of brightness temperature obtained by FY-3B/MWRI using Aqua/AMSR-E data for snow depth retrieval in the Arctic. Acta Oceanol. Sin. 2021, 40, 43–53. [Google Scholar] [CrossRef]
- Dai, L.Y.; Che, T.; Xie, H.J.; Wu, X.J. Estimation of Snow Depth over the Qinghai-Tibetan Plateau Based on AMSR-E and MODIS Data. Remote Sens. 2018, 10, 1989. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2465–2474. [Google Scholar]
- Snehmani; Singh, M.K.; Gupta, R.; Bhardwaj, A.; Joshi, P.K. Remote sensing of mountain snow using active microwave sensors: A review. Geocarto Int. 2015, 30, 1–27. [Google Scholar] [CrossRef]
- Guneriussen, T.; Hogda, K.A.; Johnsen, H.; Lauknes, I. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2101–2108. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Yang, J.; Chen, X.; Hao, J. Estimating snow depth using multi-source data fusion based on the D-InSAR method and 3DVAR fusion algorithm. Remote Sens. 2017, 9, 1195. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Tan, S.; King, J.; Derksen, C.; Lemmetyinen, J.; Tsang, L. Forward and inverse radar modeling of terrestrial snow using SnowSAR data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7122–7132. [Google Scholar] [CrossRef]
- Xiong, C.; Shi, J. The potential for estimating snow depth with QuikScat data and a snow physical model. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1156–1160. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, S.; Tsang, L.; Kang, D.H.; Kim, E. Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations. Water Resour. Res. 2021, 57, e2020WR027563. [Google Scholar] [CrossRef]
- Bernier, M.; Fortin, J.; Gauthier, Y.; Gauthier, R.; Roy, R.; Vincent, P. Determination of snow water equivalent using RADARSAT SAR data in eastern Canada. Hydrol. Process. 1999, 13, 3041–3051. [Google Scholar] [CrossRef]
- Sun, S.; Che, T.; Wang, J.; Li, H.; Hao, X.; Wang, Z.; Wang, J.J.A. Estimation and analysis of snow water equivalents based on C-band SAR data and field measurements. Arct. Antarct. Alp. Res. 2015, 47, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Leinss, S.; Parrella, G.; Hajnsek, I. Snow height determination by polarimetric phase differences in X-band SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3794–3810. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, S.; Kumar, S.; Thakur, P.; Jain, K.; Kumar, A. Snow depth retrieval in North-Western Himalayan region using pursuit-monostatic TanDEM-X datasets applying polarimetric synthetic aperture radar interferometry based inversion Modelling. Int. J. Remote Sens. 2021, 42, 2872–2897. [Google Scholar] [CrossRef]
- Pettinato, S.; Paloscia, S.; Santi, E.; Palchetti, E.; De Gregorio, L.; Notarnicola, C.; Cuozzo, G.; Marin, C.; Cigna, F.; Tapete, D. Multi-Frequency SAR Images for SWE Retrieval in Alpine Areas Through Machine Learning APPROACHES. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2930–2933. [Google Scholar]
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Navacchi, C.; Bauer-Marschallinger, B.; Hahn, S.; Steele-Dunne, S.; Pfeil, I.; Dorigo, W.; Wagner, W. Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe. Remote Sens. 2020, 12, 3404. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 system capabilities and applications. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar]
- Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yang, J.J.S.B. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull 2019, 64, 370–373. [Google Scholar]
- Reges, H.W.; Doesken, N.; Turner, J.; Newman, N.; Bergantino, A.; Schwalbe, Z. CoCoRaHS: The evolution and accomplishments of a volunteer rain gauge network. Bull. Am. Meteorol. Soc. 2016, 97, 1831–1846. [Google Scholar] [CrossRef]
- Jaffrés, J.B. GHCN-Daily: A treasure trove of climate data awaiting discovery. Comput. Geosci. 2019, 122, 35–44. [Google Scholar] [CrossRef]
- Vollrath, A.; Mullissa, A.; Reiche, J. Angular-based radiometric slope correction for Sentinel-1 on google earth engine. Remote Sens. 2020, 12, 1867. [Google Scholar] [CrossRef]
- Carrera-Hernandez, J.J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico. Remote Sens. Environ. 2021, 261, 112474. [Google Scholar] [CrossRef]
- Satellites, C.O.E.O. Analysis Ready Data For Land. Available online: https://ceos.org/ard/files/PFS/NRB/v5.0/Normalised_Rader_Backscatter-v5.0 (accessed on 1 March 2021).
- Hoekman, D.H. Radar Remote Sensing Data for Applications in Forestry. Doctoral Dissertation, Internally Prepared, Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, Wageningen, The Netherlands, 1990. [Google Scholar]
- Zhou, J.; Jia, L.; Menenti, M.; Gorte, B. On the performance of remote sensing time series reconstruction methods—A spatial comparison. Remote Sens. Environ. 2016, 187, 367–384. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- King, J.; Kelly, R.; Kasurak, A.; Duguay, C.; Gunn, G.; Rutter, N.; Watts, T.; Derksen, C. Spatio-temporal influence of tundra snow properties on Ku-band (17.2 GHz) backscatter. J. Glaciol. 2015, 61, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Naeimi, V.; Paulik, C.; Bartsch, A.; Wagner, W.; Kidd, R.; Park, S.-E.; Elger, K.; Boike, J. ASCAT Surface State Flag (SSF): Extracting information on surface freeze/thaw conditions from backscatter data using an empirical threshold-analysis algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2566–2582. [Google Scholar] [CrossRef]
- Bergstedt, H.; Bartsch, A.; Neureiter, A.; Höfler, A.; Widhalm, B.; Pepin, N.; Hjort, J. Deriving a Frozen Area Fraction From Metop ASCAT Backscatter Based on Sentinel-1. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6008–6019. [Google Scholar] [CrossRef] [Green Version]
- West, R.D. Potential applications of 1–5 GHz radar backscatter measurements of seasonal land snow cover. Radio Sci. 2000, 35, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Snehmani; Venkataraman, G.; Nigam, A.; Singh, G. Development of an inversion algorithm for dry snow density estimation and its application with ENVISAT-ASAR dual co-polarization data. Geocarto Int. 2010, 25, 597–616. [Google Scholar] [CrossRef]
- Bergstedt, H.; Zwieback, S.; Bartsch, A.; Leibman, M. Dependence of C-band backscatter on ground temperature, air temperature and snow depth in arctic permafrost regions. Remote Sens. 2018, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, B.; Bartsch, A.; Goler, R. Simplified normalization of C-band synthetic aperture radar data for terrestrial applications in high latitude environments. Remote Sens. 2018, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Bergstedt, H.; Bartsch, A.; Duguay, C.R.; Jones, B.M. Influence of surface water on coarse resolution C-band backscatter: Implications for freeze/thaw retrieval from scatterometer data. Remote Sens. Environ. 2020, 247, 111911. [Google Scholar] [CrossRef]
- Bergstedt, H.; Bartsch, A. Surface state across scales; temporal and spatial patterns in land surface freeze/thaw dynamics. Geosciences 2017, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Panetti, A.; Rostan, F.; L’Abbate, M.; Bruno, C.; Bauleo, A.; Catalano, T.; Cotogni, M.; Galvagni, L.; Pietropaolo, A.; Taini, G. Copernicus sentinel-1 satellite and C-SAR instrument. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1461–1464. [Google Scholar]
- Lievens, H.; Brangers, I.; Marshall, H.-P.; Jonas, T.; Olefs, M.; De Lannoy, G. Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps. Cryosphere Discuss. 2021, 1–25. [Google Scholar] [CrossRef]
- Pivot, F.C. C-band SAR imagery for snow-cover monitoring at Treeline, Churchill, Manitoba, Canada. Remote Sens. 2012, 4, 2133–2155. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zheng, L. Mapping radar glacier zones and dry snow line in the Antarctic Peninsula using Sentinel-1 images. Remote Sens. 2017, 9, 1171. [Google Scholar] [CrossRef] [Green Version]
Study Site | (a) FV | (b) RS | (c) NK | (d) AP |
---|---|---|---|---|
Continent | Europe | Europe | Northern America | Asia |
Country | Norway | Austria | The United States | Tajikistan |
Latitude | 60.6015° N | 47.1321° N | 59.6982° N | 39.0842° N |
Longitude | 7.52774° E | 12.6353° E | 150.7166° W | 68.8649° E |
Height | 1208 m | 2310 m | 559 m | 3373 m |
Land Cover | Tundra | Grass | Tundra | Grass |
Area | Mode | Flight Dir. | Platform | Orbit | Number |
---|---|---|---|---|---|
(a) FV | IW | Ascending | A | 117/44 | 112/102 |
B | 117/44 | 101/97 | |||
Descending | A | 110/37 | 103/103 | ||
B | 110/37 | 102/103 | |||
(b) RS | IW | Ascending | A | 117/44 | 104/102 |
B | 117/44 | 90/91 | |||
Descending | A | 95 | 101 | ||
B | 95 | 101 | |||
(c) NK | IW | Ascending | A | Null | Null |
B | 65 | 72 | |||
Descending | A | 131 | 73 | ||
B | Null | Null | |||
(d) AP | IW | Ascending | A | 71 | 96 |
B | Null | Null | |||
Descending | A | 151 | 85 | ||
B | Null | Null |
Significance Level | Correlation Value | Correlation Level |
---|---|---|
p < 0.01 | |Cor| ≥ 0.8 | Extremely strong correlation |
p < 0.01 | 0.8 > |Cor| ≥ 0.6 | Strong correlation |
p < 0.01 | 0.6 > |Cor| ≥ 0.4 | Moderate correlation |
p > 0.01 | 0.4 > |Cor| ≥ 0.2 | Weak correlation |
p > 0.01 | |Cor| < 0.2 | Non correlation |
Study Area | Land Type | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | ||||
---|---|---|---|---|---|---|---|---|---|
p | Slope | p | Slope | p | Slope | p | Slope | ||
(a) FV | Rock | 0.22 | 0.40 | 0.06 | 0.97 | 0.06 | 0.71 | 0.01 | 1.13 |
Soil | 0.22 | 0.30 | 0.26 | 0.21 | 0.26 | 0.21 | 0.01 | 0.24 | |
(b) RS | Rock | 0.22 | 0.36 | 0.13 | 0.49 | 0.13 | 0.87 | 0.13 | 0.49 |
Soil | 0.22 | 0.24 | 0.13 | −0.11 | 1 | −0.03 | 0.13 | −0.20 | |
(c) NK | Rock | 0.03 | 0.95 | 0.06 | 0.58 | 0.09 | 1.67 | 0.02 | 0.68 |
Soil | 1 | −0.01 | 0.02 | −1.46 | 0.03 | −2.20 | 0.02 | −1.19 | |
(d) AP | Rock | Null | Null | 0.02 | 0.55 | 0.13 | 0.44 | 0.01 | 0.67 |
Soil | Null | Null | 0.26 | −1.04 | 0.06 | −0.89 | 0.01 | −1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Hao, X.; Wang, J.; Li, H.; Zhang, J. Quantitative Evaluation of the Soil Signal Effect on the Correlation between Sentinel-1 Cross Ratio and Snow Depth. Remote Sens. 2021, 13, 4691. https://doi.org/10.3390/rs13224691
Feng T, Hao X, Wang J, Li H, Zhang J. Quantitative Evaluation of the Soil Signal Effect on the Correlation between Sentinel-1 Cross Ratio and Snow Depth. Remote Sensing. 2021; 13(22):4691. https://doi.org/10.3390/rs13224691
Chicago/Turabian StyleFeng, Tianwen, Xiaohua Hao, Jian Wang, Hongyi Li, and Juan Zhang. 2021. "Quantitative Evaluation of the Soil Signal Effect on the Correlation between Sentinel-1 Cross Ratio and Snow Depth" Remote Sensing 13, no. 22: 4691. https://doi.org/10.3390/rs13224691
APA StyleFeng, T., Hao, X., Wang, J., Li, H., & Zhang, J. (2021). Quantitative Evaluation of the Soil Signal Effect on the Correlation between Sentinel-1 Cross Ratio and Snow Depth. Remote Sensing, 13(22), 4691. https://doi.org/10.3390/rs13224691