AEM in Norway: A Review of the Coverage, Applications and the State of Technology
Abstract
:1. Introduction
1.1. Background Information: The Airborne Electromagnetic Method
1.1.1. Frequency Domain
1.1.2. Time Domain
1.1.3. FEM vs. TEM
1.2. Overview of Past Surveys
1.2.1. NGU Surveys
1.2.2. Norwegian Geotechnical Institute and EMerald Geomodelling Surveys
1.3. Coverage Compared to Neighbouring Nordic Countries
2. Material and Methods
2.1. Case Study 1—E16 Highway, Southeastern Norway
2.1.1. Geological Setting
2.1.2. Geophysical Data
2.1.3. Geotechnical Data
2.1.4. Depth to Bedrock Modelling
2.1.5. Quick Clay Modelling
2.2. Case Study 2—The Ramså Basin, Northern Norway
3. Results
3.1. Case Study 1—E16, Nes County
3.1.1. Bedrock Modelling (2013 Survey Area)
3.1.2. Bedrock Modelling (2020 Survey Area)
3.1.3. Quick Clay Modelling
3.2. Case Study 2—Ramså Basin
3.2.1. Comparison of Subsurface Resistivity from FHEM, Borehole and ERT
3.2.2. 3D Resistivity Model of the Ramså Basin
3.2.3. Possible Extension of the Ramså Basin
4. Discussion
4.1. Synthesis of Case Studies
4.2. Generalizations: Advantages and Limitations of AEM for Ground Investigations
4.3. Future Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Location | Survey Dates | Description | System | Use Cases | Related Publications | |||||
---|---|---|---|---|---|---|---|---|---|---|
Depth to Bedrock | Soil Properties (Including Quick Clay) | Landslide Hazard Assessment | Weakness Zones | Mineral Prospecting/ Graphite/ Uranium | Rock Unit Mapping | |||||
Flåm Valley, Aurland municipality | 2009 | Landslide hazard study | SkyTEM | x | [24,73] | |||||
Kløfta-Kongsvinger | 2013, 2020 | Road planning project for the E16 highway | SkyTEM | x | x | [9,38,41,47,74] | ||||
Gran and Jevnaker | 2014 | tunneling and road cuts through hazardous black shale | SkyTEM | x | [14] | |||||
Brumunddal-Lillehammer | 2015 | railway corridor planning (InterCity project) | SkyTEM | x | [75] | |||||
Various railway corridors around the Oslo fjord, eastern Norway | 2015 | railway corridor planning (InterCity project) | SkyTEM | x | x | [76,77] | ||||
Sandvika-Hønefoss | 2016 | Joint road and railway planning project for E16 highway | SkyTEM | x | x | x | x | [40,78] | ||
Gulskog-Hokksund | 2016 | Railway planning project west of Drammen | SkyTEM | x | x | [41] | ||||
Trøndelag county | 2019 | Road planning for E6 highway for multiple segments near Trondheim | SkyTEM | x | x | x | x | [48,79,80] | ||
Kongsberg | 2009 | Alum shale/uranium exploration | NGU Hummingbird | x | [81,82] | |||||
Numedalen | 2006, 2010 | A comparison of SKYTEM and Hummingbird data interpretation | NGU Hummingbird | x | x | [64] | ||||
Byneset | 2012–2013 | Quick clay mapping | NGU Hummingbird | x | x | x | [11,83] | |||
Andoya | 2012–2015 | Basin extension and bedrock depth | NGU Hummingbird | x | x | [59] | ||||
Northern Norway | 2012–2016 | Graphite exploration | NGU Hummingbird | x | [62,84,85] |
Borehole ID | Bedrock Depth (m) | Predicted Bedrock Depth (m) | Difference (m) | Uncertainty (m) | Error Ratio |
1-0u | 4.43 | 3.13 | −1.29 | 11.18 | 0.29 |
2-0u | 6.40 | 8.28 | 1.88 | 9.54 | 0.29 |
5-0u | 7.20 | 10.03 | 2.83 | 8.47 | 0.39 |
4-0u | 14.40 | 12.82 | −1.58 | 12.65 | 0.11 |
3-0u | 15.48 | 17.12 | 1.65 | 13.33 | 0.11 |
13A-0u | 27.73 | 36.33 | 8.60 | 9.46 | 0.31 |
33-0u | 32.15 | 19.67 | −12.48 | 8.10 | 0.39 |
31-0u | 32.30 | 15.64 | −16.66 | 9.45 | 0.52 |
7-0u | 35.58 | 35.72 | 0.15 | 12.35 | 0.00 |
32-0u | 36.40 | 22.44 | −13.96 | 11.27 | 0.38 |
15-0u | 38.83 | 34.71 | −4.12 | 10.41 | 0.11 |
17-0u | 48.58 | 43.37 | −5.20 | 11.27 | 0.11 |
16-0u | 49.20 | 36.85 | −12.35 | 10.47 | 0.25 |
14-0u | 50.03 | 39.88 | −10.15 | 10.01 | 0.20 |
11-0u | 67.73 | 45.47 | −22.26 | 12.55 | 0.33 |
Borehole ID | Bedrock Depth (m) | Predicted Bedrock Depth (m) | Difference (m) | Uncertainty (m) | Error Ratio |
1-0u | 4.43 | 3.13 | −1.29 | 11.18 | 0.29 |
2-0u | 6.40 | 8.28 | 1.88 | 9.54 | 0.29 |
5-0u | 7.20 | 10.03 | 2.83 | 8.47 | 0.39 |
4-0u | 14.40 | 12.82 | −1.58 | 12.65 | 0.11 |
3-0u | 15.48 | 17.12 | 1.65 | 13.33 | 0.11 |
13A-0u | 27.73 | 36.33 | 8.60 | 9.46 | 0.31 |
33-0u | 32.15 | 19.67 | −12.48 | 8.10 | 0.39 |
31-0u | 32.30 | 15.64 | −16.66 | 9.45 | 0.52 |
7-0u | 35.58 | 35.72 | 0.15 | 12.35 | 0.00 |
32-0u | 36.40 | 22.44 | −13.96 | 11.27 | 0.38 |
15-0u | 38.83 | 34.71 | −4.12 | 10.41 | 0.11 |
17-0u | 48.58 | 43.37 | −5.20 | 11.27 | 0.11 |
16-0u | 49.20 | 36.85 | −12.35 | 10.47 | 0.25 |
14-0u | 50.03 | 39.88 | −10.15 | 10.01 | 0.20 |
11-0u | 67.73 | 45.47 | −22.26 | 12.55 | 0.33 |
References
- Pfaffling, A.; Hass, C.; Reid, J.E. Direct helicopter EM—Sea-ice thickness inversion assessed with synthetic and field data. Geophysics 2007, 72, F127–F137. [Google Scholar] [CrossRef] [Green Version]
- Foley, N.; Tulaczyk, S.; Auken, E.; Schamper, C.; Dugan, H.; Mikucki, J.; Virginia, R.; Doran, P. Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica. Geophysics 2016, 81, WA87–WA99. [Google Scholar] [CrossRef] [Green Version]
- Chistensen, C.; Pfaffhuber, A.; Anschutz, H.; Smaavik, T. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking. J. Appl. Geophys. 2015, 119, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Oldenborger, G.; Logan, C.; Hinton, M.; Pugin, A.; Sapia, V.; Sharpe, D.; Russel, H. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data. J. Appl. Geophys. 2016, 128, 191–201. [Google Scholar] [CrossRef]
- Smith, R. Airborne electromagnetic methods: Applications to minerals, water and hydrocarbon exploration. CSEG Rec. 2010, 35, 7–10. [Google Scholar]
- Rønning, J.S.; Gautneb, H.; Larsen, B.E.; Henderson, I.H.C.; Knezevic, J.; Gellein, J.; Davidsen, B.; Ofstad, F.; Viken, G. Geophysical and Geological Investigations for Graphite on SENJA and in Kvæfjord, Troms County, Northern Norway; NGU Report 2019; The Geological Survey of Norway (NGU): Trondheim, Norway, 2019; p. 159. [Google Scholar]
- Rønning, J.S.; Gautneb, H.; Larsen, B.E.; Baranwal, V.C.; Davidsen, B.; Engvik, A.K.; Gellein, J.; Knezevic, J.; Ofstad, F.; Xiuyan, R.; et al. Geophysical and Geological Investigations of Graphite Occurrences in Vesterålen, Northern Norway, in 2018 and 2019; NGU Report 2019; The Geological Survey of Norway (NGU): Trondheim, Norway, 2019; p. 212. [Google Scholar]
- Okazaki, K.; Mogi, T.; Utsugi, M.; Ito, Y.; Kunishima, H.; Yamazaki, T.; Takahashi, Y.; Hashimoto, T.; Ymamaya, Y.; Ito, H.; et al. Airborne electromagnetic and magnetic surveys for long tunnel construction design. Phys. Chem. Earth 2011, 36, 1237–1246. [Google Scholar] [CrossRef]
- Anschütz, H.; Bazin, S.; Kåsin, K.; Pfaffhuber, A.; Smaavik, T. Airborne mapping of sensitive clay-stretching the limits of AEM resolution and accuracy. Near Surf. Geophys. 2017, 15, 467–474. [Google Scholar] [CrossRef]
- Baranwal, V.C.; Rønning, J.S.; Dalsegg, E.; Solberg, I.L.; Tønnesen, J.F.; Rodionov, A.; Dretvik, H. Mapping of Marine Clay Layers Using Airborne EM and Ground Geophysical Methods at Byneset, Trondheim Municipality; NGU report 2015; The Geological Survey of Norway (NGU): Trondheim, Norway, 2015; p. 59. [Google Scholar]
- Baranwal, V.C.; Rønning, J.S.; Solberg, I.L.; Dalsegg, E.; Tønnesen, J.F.; Long, M. Investigation of a sensitive clay landslide area using frequency-domain helicopter-borne EM and ground geophysical methods. In Landslides in Sensitive Clays; Series in Advances in Natural and Technological Hazards, Research; Thakur, V., L’Heureux, J.S., Locat, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 475–485. [Google Scholar]
- Dickson, N.E.M.; Comte, J.C.; McKinley, J.; Ofterdinger, U. Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: Case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland. Water Resour. Res. 2014, 50, 7984–8001. [Google Scholar] [CrossRef] [Green Version]
- Høyer, A.S.; Jørgensen, F.; Foged, N.; He, X.; Christiansen, A.V. Three-dimensional geological modelling of AEM resistivity data—A comparison of three methods. J. Appl. Geophys. 2015, 115, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Pfaffhuber, A.; Lysdahl, A.; Sørmo, E.; Bazin, S.; Skurdal, G.; Thomassen, T.; Anschütz, H.; Scheibz, J. Delineating hazardous material without touching—AEM mapping of Norwegian alum shale. First Break 2017, 35, 35–39. [Google Scholar] [CrossRef]
- Siemon, B.; Christiansen, A.V.; Auken, E. A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf. Geophys. 2009, 7, 629–646. [Google Scholar] [CrossRef] [Green Version]
- Legault, J. Airborne Electromagnetic Systems—State of the Art and Future Directions. CSEG Rec. 2015, 40, 38–49. [Google Scholar]
- Auken, E.; Boesen, T.; Christiansen, A.V. A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017. Adv. Geophys. 2017, 58, 47–93. [Google Scholar]
- Valleau, N.C. HEM data processing—A practical overview. Explor. Geophys. 2000, 31, 584–594. [Google Scholar] [CrossRef]
- Smith, R.S.; Rodney, K.; Hodges, G.; Lemieux, J.A. Comparison of airborne electromagnetic data with ground resistivity data over the midwest deposit in the Athabasca basin. Near Surf. Geophys. 2011, 9, 319–330. [Google Scholar] [CrossRef]
- Liu, Y.; Farquharson, C.G.; Yin, C.; Baranwal, V.C. Wavelet-based 3-D inversion for frequency-domain airborne EM data. Geophys. J. Int. 2018, 213, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, C. 3D inversion for multi-pulse airborne transient electromagnetic data. Geophysics 2016, 81, 1–8. [Google Scholar] [CrossRef]
- Chang-Chun, Y.; Xiu-Yan, R.; Liu, Y.; Yan-Fu, Q.; Chang-Kai, Q.; Jing, C. Review on airborne electromagnetic inverse theory and applications. Geophysics 2015, 80, W17–W31. [Google Scholar] [CrossRef]
- NGU Geophysics Database. Available online: https://geo.ngu.no/geoscienceportalopen/search (accessed on 11 January 2021).
- Pfaffhuber, A.; Bazin, S.; Domaas, U.; Grimstad, E. Electrical Resistivity Tomography to follow up an airborne EM rock slide mapping survey—Linking rock quality with resistivity. In Proceedings of the 12th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 15–18 August 2011; pp. 185–189. [Google Scholar]
- Skytem Systems. Available online: https://skytem.com/tem-systems/ (accessed on 15 January 2021).
- Jørgensen, F.; Sandersen, P.B.; Auken, E. Imaging buried Quaternary valleys using the transient electromagnetic method. J. Appl. Geophys. 2003, 53, 199–213. [Google Scholar] [CrossRef]
- Background Map of Norway. Available online: https://openwms.statkart.no/skwms1/wms.topo4? (accessed on 16 January 2021).
- Nasuti, A.; Roberts, D.; Dumais, M.-A.; Ofstad, F.; Hyvönen, E.; Stampolidis, A.; Rodionov, A. New high-resolution aeromagnetic and radiometric surveys in Finnmark and North Troms: Linking anomaly patterns to bedrock geology and structure. Nor. J. Geol. 2015, 95, 217–243. [Google Scholar] [CrossRef] [Green Version]
- Barfod, A.A.; Møller, I.; Christiansen, A.V. Compiling a national resistivity atlas of Denmark based on airborne and ground-based transient electromagnetic data. J. Appl. Geophys. 2016, 134, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Solberg, I.-L.; Hansen, L.; Rønning, J.S.; Haugen, E.; Dalsegg, E.; Tønnesen, J. Combined geophysical and geotechnical approach to ground investigations and hazard zonation of a quick clay area, mid Norway. Bull. Eng. Geol. Environ. 2012, 71, 119–133. [Google Scholar] [CrossRef]
- Törnqvist, G. Some practical results of airborne electromagnetic prospecting in Sweden. Geophys. Prospect. 1958, 6, 112–126. [Google Scholar] [CrossRef]
- Puranen, R.; Sahala, L.; Saavuori, H.; Suppala, I. Airborne electromagnetic surveys of clay areas in Finland. Spec. Pap. Geol. Surv. Finl. 1999, 159–172. [Google Scholar]
- NGU Quaternary Geology Basemap. Available online: http://geo.ngu.no/mapserver/LosmasserWMS (accessed on 16 January 2021).
- Viezzoli, A.; Christiansen, A.; Auken, E. Quasi-3D modeling of airborne TEM data by Spatially Constrained Inversion. Geophysics 2008, 73, F105–F113. [Google Scholar] [CrossRef]
- Christiansen, A.V.; Auken, E.; Sørensen, K. The transient electromagnetic method. In Groundwater Geophysics; Kirsch, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Pryet, A.; Ramm, J.; Chilès, J.P.; Auken, E.; Deffontaines, B.; Violette, S. 3D resistivity gridding of large AEM datasets: A step toward enhanced geological interpretation. J. Appl. Geophys. 2011, 75, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Kartverket N50 Topographical Map of Norway. Available online: https://openwms.statkart.no/skwms1/wms.vegnett (accessed on 20 January 2021).
- Gulbrandsen, M.L.; Cordua, K.S.; Bach, T.; Hansen, T.M. Smart Interpretation–automatic geological interpretations based on supervised statistical models. Comput. Geosci. 2017, 21, 427–440. [Google Scholar] [CrossRef]
- Gulbrandsen, M.L.; Ball, L.B.; Minsley, B.J.; Hansen, T.M. Automatic mapping of the base of aquifer—A case study from Morrill, Nebraska. Interpretation 2017, 5, T231–T241. [Google Scholar] [CrossRef]
- Lysdahl, A.K.; Andresen, L.; Vöge, M. Construction of bedrock topography from Airborne-EM data by Artificial Neural Network. In Numerical Methods in Geotechnical Engineering IX; CRC Press: Boca Raton, FL, USA, 2018; pp. 691–696. [Google Scholar]
- Pfaffhuber, A.A.; Lysdahl, A.O.; Christensen, C.; Vöge, M.; Kjennbakken, H.; Mykland, J. Large scale, efficient geotechnical soil investigations applying machine learning on airborne geophysical models. In Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik, Iceland, 1–6 September 2019. [Google Scholar]
- Kovacevic, M.; Bajat, B.; Trivic, B.; Pavlovic, R. Geological units classification of multispectral images by using Support Vector Machines. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Barcelona, Spain, 4–6 November 2009; pp. 267–272. [Google Scholar]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python 2020. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Long, M.; Pfaffhuber, A.A.; Bazin, S.; Kåsin, K.; Gylland, A.; Montaflia, A. Glacio-marine clay resistivity as a proxy for remoulded shear strength: Correlations and limitations. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 63–78. [Google Scholar] [CrossRef]
- Christensen, C.W.; Pfaffhuber, A.A.; Skurdal, G.H.; Lysdahl, A.O.K.; Vöge, M. Large scale & efficient geotechnical soil investigations: Applying machine learning on airborne geophysical models to map sensitive glaciomarine clay. In Proceedings of the 6th International Conference on Geotechnical and Geophysical Site Characterization, Budapest, Hungary, 7–11 September 2020. [Google Scholar]
- Christensen, C.W.; Harrison, E.J.; Pfaffhuber, A.A.; Lund, A.K. A machine-learning based approach to regional-scale mapping of sensitive glaciomarine clay combining airborne electromagnetics and geotechnical data. Near Surf. Geophys. 2021, 19, 523–539. [Google Scholar] [CrossRef]
- Dalland, A. The Mesozoic rocks of Andøy, northern Norway. NGU Ser. 1975, 316, 271–287. [Google Scholar]
- Brönner, M.; Dalsegg, E.; Fabian, K.; Rønning, J.S.; Tønnesen, J.F. Geophysical methods. In Tropical Weathering in Norway; TWIN Final Report. NGU Report 2012, 2012.005; Olesen, O., Bering, D., Brönner, M., Dalsegg, E., Fabian, K., Fredin, O., Gellein, J., Husteli, B., Magnus, C., Rønning, J.S., et al., Eds.; NGU: Trondheim, Norway, 2012; pp. 19–26. [Google Scholar]
- Vogt, J.H.L. Om Andøens jurafelt, navnlig om landets langsomme nedsynken under juratiden og den senere hævning samt gravforkastning. NGU Ser. 1905, 43, 1–67. (In Norwegian) [Google Scholar]
- Henningsen, T.; Teveten, E. Geologiske kart over Norge. In Berggrunnskart ANDØYA, M 1:250 000; Norges Geologiske Undersøkelse: Trondheim, Norway, 1998. [Google Scholar]
- Midbøe, P. Geologisk Introduksjon til Ramsåfeltet, Andøya og Sortlandsundetbassenget Vesterålen, 4th ed.; Statoil Internal Report; The Geological Survey of Norway (NGU): Trondheim, Norway, 2011. (In Norwegian) [Google Scholar]
- Friis, J.P. Andøens kullfelt. Nor. Geol. Undersøkelse 1903, 36, 1–38. (In Norwegian) [Google Scholar]
- Rodionov, A.; Ofstad, F.; Tassis, G. Helicopter-Borne Magnetic, Electromagnetic and Radiometric Geophysical Survey at Andøya, Nordland County; NGU Report 2012; The Geological Survey of Norway (NGU): Trondheim, Norway, 2012. [Google Scholar]
- Dahlin, T. On the Automation of 2D Resistivity Surveying for Engineering and Environmental Applications. Ph.D. Thesis, Department of Engineering Geology, Lund Institute of Technology, Lund University, Lund, Sweden, 1993. [Google Scholar]
- Elvebakk, H.; Brønner, M.; Gellein, J.; Rønning, J.S. Geofysisk Logging Av 4 Borehull i Ramså Feltet, Andøya; NGU Report 2016; The Geological Survey of Norway (NGU): Trondheim, Norway, 2016. (In Norwegian) [Google Scholar]
- Baranwal, V.C.; Brönner, M.; Rønning, J.S.; Elvebakk, H.; Dalsegg, E. 3D interpretation of helicopter-borne frequency-domain electromagnetic (HEM) data from Ramså Basin and adjacent areas at Andøya, Norway. Earth Planets Space 2020, 72, 1–14. [Google Scholar] [CrossRef]
- Google Maps. 2020. Available online: https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z} (accessed on 20 January 2021).
- Mapped Quick Clay Regions, NVE and NGU. Available online: https://gis3.nve.no/map/services/SkredKvikkleire2/MapServer/WMSServer?request=GetCapabilities&service=WM (accessed on 20 January 2021).
- Brönner, M.; Johansen, T.A.; Baranwal, V.C.; Črne, A.; Davidsen, B.; Elvebakk, H.; Engvik, A.; Forthun, T.; Gellein, J.; Henningsen, T.; et al. Ramså Basin, Northern Norway: An Integrated Study; NGU Report 2017; The Geological Survey of Norway (NGU): Trondheim, Norway, 2017; p. 290. [Google Scholar]
- Baranwal, V.C.; Dalsegg, E.; Rønning, J.S. Geophysical mapping of clay layers in Numedalen region, Norway. In Proceedings of the 21st EM Induction Workshop (EMIW), Darwin, Reid, Australia, 25–31 July 2012. [Google Scholar]
- Reid, J.; Fitzpatrick, A.; Godber, K. An overview of the SkyTEM airborne EM system with Australian examples. Preview 2010, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Baranwal, V.C.; Rønning, J.S.; Gautneb, H.; Brønner, M. Integrated interpretation of airborne EM and magnetic data for graphite exploration from Vesterålen area in Northern Norway. In Proceedings of the AEM 7th international workshop on airborne electromagnetics, Kolding, Denmark, 17–20 June 2018. Extended abstract. [Google Scholar]
- Sandven, R.; Montafia, A.; Gylland, A.S.; Pfaffhuber, A.A.; Kåsin, K.; Long, M. Detektering av Kvikkleire-Sluttrapport; Norwegian Water and Energy Directorate: Oslo, Norway, 2015. (In Norwegian) [Google Scholar]
- Skurdal, G.H.; Pfaffhuber, A.A.; Davis, A.; Bazin, S. Improved near-surface resolution in geotechnical applications using very early AEM time gates. Explor. Geophys. 2020, 51, 184–192. [Google Scholar] [CrossRef]
- Barfod, A.A.; Møller, I.; Christiansen, A.V.; Høyer, A.S.; Hoffimann, J.; Straubhaar, J.; Caers, J. Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods. Hydrol. Earth Syst. Sci. 2018, 22, 3351–3373. [Google Scholar] [CrossRef] [Green Version]
- Høyer, A.S.; Vignoli, G.; Hansen, T.M.; Vu, L.T.; Keefer, D.A.; Jørgensen, F. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies. Hydrol. Earth Syst. Sci. 2017, 21, 6069–6089. [Google Scholar] [CrossRef] [Green Version]
- Dewar, N.; Knight, R. Estimation of the top of the saturated zone from airborne electromagnetic data. Geophysics 2020, 85, EN63–EN76. [Google Scholar] [CrossRef]
- Karaoulis, M.; Ritsema, I.; Bremmer, C.; De Kleine, M. Drone-Borne Electromagnetic (DREM) Surveying in the Netherlands. In Proceedings of the NSG2020 26th European Meeting of Environmental and Engineering Geophysics, 7–8 December 2020; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2020; Volume 1, pp. 1–4. [Google Scholar]
- Bai, P.; Vignoli, G.; Viezzoli, A.; Nevalainen, J.; Vacca, G. (Quasi-) Real-Time Inversion of Airborne Time-Domain Electromagnetic Data via Artificial Neural Network. Remote. Sens. 2020, 12, 3440. [Google Scholar] [CrossRef]
- Ley-Cooper, A.Y.; Richardson, M. AusAEM; acquisition of AEM at an unprecedented scale. ASEG Ext. Abstr. 2019, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Anschütz, A.; Pfaffhuber, A.A.; Domaas, U. Combined airborne and ground geophysics as a first phase towards a landslide warning system—A Norwegian case study. Osterr. Ing. Und Archit. Z. 2015, 160, 215–219. [Google Scholar]
- Hedley, M.; Christensen, C.W.; Harrison, E.J. Algorithmic route optimization and risk reduction of a Norwegian highway using airborne geophysics. In Proceedings of the 2nd Conference on Geophysics for Infrastructure Planning, Monitoring, and BIM, Near Surface Geoscience, Bordeaux, France, 29 August–2 September 2021. [Google Scholar]
- Silvestri, S.; Christensen, C.W.; Lysdahl, A.O.K.; Anschütz, H.; Pfaffhuber, A.A.; Viezzoli, A. Peatland volume mapping over resistive substrates with airborne electromagnetic technology. Geophys. Res. Lett. 2019, 46, 6459–6468. [Google Scholar] [CrossRef] [Green Version]
- Anschütz, H.; Vöge, M.; Lysdahl, A.K.; Bazin, S.; Sauvin, G.; Pfaffhuber, A.; Berggren, A.-L. From Manual to Automatic AEM Bedrock Mapping. J. Environ. Eng. Geophys. 2017, 22, 35–49. [Google Scholar] [CrossRef]
- Pfaffhuber, A.; Persson, L.; Lysdahl, A.; Kåsin, K.; Anschütz, H.; Bastani, M.; Bazin, S.; Löfroth, H. Integrated scanning for quick clay with AEM and ground-based investigations. First Break 2017, 35, 73–79. [Google Scholar] [CrossRef]
- Rasmussen, A.H.; Linares, G.M.; Christensen, C.W.; Malik, S.; Skurdal, G.H.; Pfaffhuber, A.A. Airborne geoscanning as a site investigation tool in large-scale tunnelling projects: A synthesis of case studies from Norway and India. In Proceedings of the 11th Asian Rock Mechanics Symposium, Beijing, China, 23–27 October 2021. [Google Scholar]
- Christensen, C.W.; Skurdal, G.H.; Pfaffhuber, A.A.; Rønning, S.; Lindgard, A.; Sellgren, K.C. Airborne geoscanning and efficient geotechnical ground investigation workflows: A road-building case study from Central Norway. In Proceedings of the 18th Nordic Geotechnical Meeting, Helsinki, Finland, 25–27 May 2020. [Google Scholar]
- Harrison, E.J.; Skurdal, G.H.; Christensen, C.W.; Pfaffhuber, A.A.; Lund, A.K.; Sellgren, K.C. Applying machine learning on airborne geophysical models to map bedrock topography and its lithological boundaries. In Proceedings of the ITA-AITES World Tunnel Congress, WTC2022 and 47th General Assembly Bella Center, Copenhagen, Denmark, 22–28 April 2022. [In Review]. [Google Scholar]
- Baranwal, V.C.; Walker, P.; Koziel, J.; Møller, T.; Rønning, J.S. Helicopter-borne Geophysical Survey over the Kongsberg area of Norway: A new view of an historic mining district. In IAGA WG 1.2 on Electromagnetic Induction in the Earth at Giza, Egypt; IAGA Division VI, Extended Abstract; The Geological Survey of Norway (NGU): Trondheim, Norway, 2010. [Google Scholar]
- Baranwal, V.C.; Rønning, J.S. Airborne Geophysical Surveys and Their Integrated Interpretation. In Advances in Modeling and Interpretation in Near Surface Geophysics; Biswas, A., Sharma, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 377–400. [Google Scholar] [CrossRef]
- Solberg, I.-L.; Long, M.; Baranwal, V.C.; Gylland, A.S.; Rønning, J.S. Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Eng. Geol. 2016, 208, 214–230. [Google Scholar] [CrossRef]
- Gautneb, H.; Rønning, J.S.; Engvik, A.K.; Henderson, I.H.C.; Larsen, B.E.; Solberg, J.K.; Ofstad, F.; Gellein, J.; Elvebakk, H.; Davidsen, B. The Graphite Occurrences of Northern Norway, a Review of Geology, Geophysics, and Resources. Minerals 2020, 10, 626. [Google Scholar] [CrossRef]
- Engvik, A.K.; Gautneb, H.; Baranwal, V.C.; Rønning, J.S.; Solberg, J.K.; Liu, Y.; Austrheim, H. The control of shear-zone development and electric conductivity by graphite in granulite: An example from the Proterozoic Lofoten-Vesterålen Complex of northern Norway. Terra Nova 2021, 1–11. [Google Scholar] [CrossRef]
Bedrock Model | Training Points—Soundings | Training Points—Outcrops | Total Training Points |
---|---|---|---|
2013 | 808 | 0 | 808 |
July 2020 | 835 | 31 | 866 |
October 2020 | 850 | 31 | 881 |
Total | Used/Not Used | Clay Material (%) | Quick (%) | Brittle But Not Quick (%) | Non-Brittle (%) | |
---|---|---|---|---|---|---|
Soil samples | 1980 | 1922/58 | 99% | 16% | 17% | 66% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, E.J.; Baranwal, V.C.; Pfaffhuber, A.A.; Christensen, C.W.; Skurdal, G.H.; Rønning, J.S.; Anschütz, H.; Brönner, M. AEM in Norway: A Review of the Coverage, Applications and the State of Technology. Remote Sens. 2021, 13, 4687. https://doi.org/10.3390/rs13224687
Harrison EJ, Baranwal VC, Pfaffhuber AA, Christensen CW, Skurdal GH, Rønning JS, Anschütz H, Brönner M. AEM in Norway: A Review of the Coverage, Applications and the State of Technology. Remote Sensing. 2021; 13(22):4687. https://doi.org/10.3390/rs13224687
Chicago/Turabian StyleHarrison, Edward J., Vikas C. Baranwal, Andreas A. Pfaffhuber, Craig W. Christensen, Guro H. Skurdal, Jan Steinar Rønning, Helgard Anschütz, and Marco Brönner. 2021. "AEM in Norway: A Review of the Coverage, Applications and the State of Technology" Remote Sensing 13, no. 22: 4687. https://doi.org/10.3390/rs13224687
APA StyleHarrison, E. J., Baranwal, V. C., Pfaffhuber, A. A., Christensen, C. W., Skurdal, G. H., Rønning, J. S., Anschütz, H., & Brönner, M. (2021). AEM in Norway: A Review of the Coverage, Applications and the State of Technology. Remote Sensing, 13(22), 4687. https://doi.org/10.3390/rs13224687