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Abstract: Riparian vegetation delineation includes both the process of delineating the riparian zone
and classifying vegetation within that zone. We developed a holistic framework to assess riparian
vegetation delineation that includes evaluating channel boundary delineation accuracy using a
combination of pixel- and object-based metrics. We also identified how stream order, riparian zone
width, riparian land use, and image shadow influenced the accuracy of delineation and classification.
We tested the framework by evaluating vegetation vs. non-vegetation riparian zone maps produced
by applying random forest classification to aerial photographs with a 1 m pixel size. We assessed
accuracy of the riparian vegetation classification and channel boundary delineation for two rivers in
the northeastern United States. Overall accuracy for the channel boundary delineation was generally
above 80% for both sites, while object-based accuracy revealed that 50% of delineated channel was
less than 5 m away from the reference channel. Stream order affected channel boundary delineation
accuracy while land use and image shadows influenced riparian vegetation classification accuracy;
riparian zone width had little impact on observed accuracy. The holistic approach to quantification of
accuracy that considers both channel boundary delineation and vegetation classification developed
in this study provides an important tool to inform riparian management.

Keywords: river management; river channel delineation; vegetation classification; map accuracy
assessment

1. Introduction

Riparian floodplain vegetation is a landscape feature with ecological importance that
often far exceeds its spatial extent [1] as it provides unique habitat for many wildlife species
and corridors for species migration [2]. It is vital to monitor the changes caused by both
natural events and human activities on riparian vegetation [3,4]. Riparian monitoring and
evaluation using field-based techniques or manual digitization often demands substantial
operational resources with an associated high cost. Over the last few decades, the increased
availability of imagery with a range of spatial resolutions, as well as derived land cover
mapping products (e.g., the National Land Cover Dataset), have enhanced the capacity
to detect and delineate riparian vegetation coverage, species, and communities over large
extents [5–9]. Yet, despite these advancements, we still lack comprehensive maps of the
location and condition of riparian plant communities [10].

Early riparian vegetation maps produced from remotely sensed data were often
inaccurate; this was largely due to the constraint that the large pixel size in the available
satellite images made it difficult to detect riparian vegetation [11]. Thus, general trends in
development of riparian vegetation delineation methods have moved towards remotely
sensed data from high spatial resolution satellite-based sensors [9,12], lidar [12,13], and
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data acquired from unmanned aerial vehicles [14,15]. However, we still lack cost effective
high spatial resolution riparian vegetation mapping methods that can be applied for large
areas [6,10]. This is mainly due to three issues: (1) some technologies are still relatively
immature or cost prohibitive to apply on a broad scale [6]; (2) cost often limits application
of approaches that use commercial products rather than publicly or freely available data
sources or data processing platforms [12]; and (3) there remains no solution to the long
standing problem associated with the lack of a standardized procedure to holistically assess
both channel boundary delineation and riparian vegetation classification accuracies [16].

Riparian vegetation delineation includes both the process of delineating the riparian
zone and classifying vegetation within that zone. While classification accuracy assessment
is a clear, and well documented process, it is also vital to consider the accuracy and extent
of channel boundary location to understand riparian vegetation delineation accuracy [16].
Yet, few studies have reported channel boundary delineation accuracy nor the factors that
influence the accurate delineation of that boundary. Researchers have suggested factors
such as stream order [17] and shadows in image [18] impact channel boundary delineation
accuracy, but prior studies have not directly quantified the effect of these factors. In a
fixed width riparian zone framework, the accuracy of the channel boundary is especially
important because it has a direct influence on riparian zone delineation accuracy. In a
variable width riparian zone framework, river channel boundary accuracy does not directly
impact riparian zone map accuracy because riparian zone extent is derived directly from
digital elevation models (DEMs) instead of channel boundaries [19]. However, accurately
knowing the location of the river channel is still important because this can be utilized to
validate variable width riparian zone extent by confirming the location of the river channel.

This study sought to achieve three main goals: (1) develop a framework to assess
accuracy of riparian vegetation delineation by holistically considering accuracy in both river
channel boundary delineation and vegetation/non-vegetation classification; (2) identify
factors that influence the accuracy of both the classification and the channel boundary
delineation; and (3) develop guidance in performing riparian vegetation mapping accuracy
assessment. In developing methodology to achieve the above goals, we also aimed to
minimize costs through use of publicly available data sources.

2. Materials and Methods
2.1. Site Description

This study focused on two watersheds in the north-eastern United States (US): the
Genesee River watershed and the Hudson River watershed (Figure 1). The mainstem of
the Genesee River served as a test site for methodology development, while we used the
Stockport and Kinderhook Creek site in the Hudson River watershed for process validation.
The combination of streams within the selected sites offered a comprehensive analysis
including both small and large streams. Both sites are included in an active campaign by
the New York State (NYS) Department of Environmental Conservation (DEC) to restore
riparian vegetation to improve stream health and water quality [20].

The Genesee River flows north from Gold, Pennsylvania (elevation: 693 m) to enter
Lake Ontario in Rochester, New York (elevation: 74.5 m). The river has a total length of
247 km and a 6408 km2 drainage area with land cover along the river corridor dominated by
agriculture (52%) and forest (40%), with smaller amounts of developed land (5%), including
a mixture of residential, commercial, and industrial uses, wetlands and water (2%), and
other non-developed lands (1%) [21]. The New York Natural Heritage Program describes
the Genesee River (Figure 1) as being in poor ecological health with high ecosystem
stress [22]. We define the northern end of our study area using United States Geological
Survey (USGS) stream gauge #04231600 in Rochester, NY, USA. The southern end was
located at 41.939◦N, 77.813◦W following Makarewicz et al. [21].

Stockport Creek and its tributary Kinderhook Creek (Figure 1) are both located in the
Stockport watershed, which is the second largest tributary watershed to the tidal Hudson
River [23]. Kinderhook Creek flows from Hancock, Massachusetts (elevation: 376 m), south
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into Stockport Creek, which then enters the Hudson River mainstem in Stockport, New
York (elevation: 0.1 m) with a total length of 83 km and a 1335 km2 drainage area. Land
cover in the area is dominated by forest (71%), agriculture (21%) and other developed lands
(8%) [23].
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2.2. Data

This study used United States Department of Agriculture (USDA) National Agricul-
ture Imagery Program (NAIP) imagery [24], which we accessed through Google Earth
Engine [25]. The airborne orthorectified images in the NAIP collection are acquired at 1 m
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ground sampling distance during the growing season. The combination of high spatial,
moderate spectral, and low temporal resolution in the NAIP dataset makes it well suited
for periodic interpolation of detailed information on the boundaries of river channels and
identification of riparian vegetation. This study used four-band (blue, green, red, and
near infrared) 2015 NAIP imagery. Three auxiliary datasets were used to assist in delin-
eation and assessing uncertainty: (1) USGS National Hydrography Dataset (NHD) [26];
(2) United States Census Bureau Places and Urban Area dataset [27]; and (3) NYS Park
boundaries [28].

2.3. Delineation Processes

We sought to address the lack of published studies [5] that map both river channels and
riparian vegetation at high spatial resolution (1 m or higher) over large extents. We used
Google Earth Engine to efficiently classify riparian vegetation [25] and integrated geospatial
data (e.g., NHD) to improve delineation accuracy. Boothroyd et al. [29] has demonstrated
an increasing interest in using Google Earth Engine for large-scale fluvial geomorphology
applications such as mapping river channels over large areas. Our approach adapted the
satellite-based method of Monegaglia et al. [30] to semi-automatically map river channel
boundaries using NAIP aerial photography and generate a map of riparian vegetation. We
delineated channel boundaries and then performed a binary land cover classification to
identify vegetation within the delineated riparian zones. Details of these two major steps
are described below.

2.3.1. Step 1: Channel Boundary and Riparian Zone Delineation

We used a semi-automated approach to delineate river channel boundaries by integrat-
ing information extracted from the NAIP images with NHD centerline data (Figure 2). The
method began by constructing a multi-band Normalized Difference Water Index (NDWI)
from the selected NAIP image. The NDWI (Equation (1)) combines green and near-infrared
(NIR) reflectance and is frequently utilized for extracting surface water features [31].

NDWI =
Green − NIR
Green + NIR

(1)

McFeeters [32] found NDWI values of 0.3 generated from QuickBird imagery were an
ideal cut-off for extracting water features in various regions. Based on this starting point,
we tested values from 0–0.6 and through visual analysis found 0.4 was best for extracting
surface water features in our study. We generated an NDWI mask using the selected cut-off
for surface water extraction and converted this to a polygon vector layer that contained all
of the potential surface water features. To improve computational efficiency, we applied a
200 m buffer along each side of the NHD river centerlines to limit the channel boundary
search area. Selection of the 200 m buffer size was based on empirical testing to guarantee
inclusion of the entire river channel and consideration of possible uncertainties in NHD
data. We selected preliminary channel boundary polygons based on the intersection of the
NDWI vector layer and the NHD buffer. We then manually removed non-river artifacts,
such as road and railroad bridges, and smoothed the river channel boundary. We utilized a
manual approach in this study due to the small number of artifacts presented in the image
(n = 16). For a larger study area, or a region with a more complex built environment, we
would recommend exploring automation. For example, publicly available road centreline
data, e.g., US Census Topologically Integrated Geographic Encoding and Referencing
(TIGER) products could be used to identify potential bridge locations. However, manual
verification is likely still needed to confirm bridge removal accuracy.

The riparian zone in this study was defined as the region within 90 m of the river
channel boundary. Sweeney and Newbold [33] and Hill [34] both suggested 90 m buffers
as optimal to achieve the highest possible sediment and nutrient removal efficiency, which
is relevant for pollution mitigation within our selected rivers. Multiple variable-width
riparian zone delineation processes have been proposed [19,35]. However, these methods
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rely heavily on accurate and high spatial resolution DEMs, and such products are not
widely available at 1 m spatial resolution. Thus, we used fixed width delineation for
this study.
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2.3.2. Step 2: Classifying Vegetation vs. Non-Vegetation within the Riparian Zone

We performed a binary classification in Google Earth Engine to identify vegetation
within the riparian zone. The vegetation class included forests and shrubland, while
the non-vegetation class included agricultural fields, roads, buildings, parking lots, and
grassland. The classification process applied a random forest classifier to the NAIP imagery
using Google Earth Engine [29]. Classification inputs included the four NAIP image bands
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and a normalized difference vegetation index (NDVI, (Equation (2))) derived from the red
and NIR bands.

NDVI =
Red − NIR
Red + NIR

(2)

Based on prior experimentation, we used 200 trees, set variables per split to 1, mini-
mum leaf population to 1, and bag fraction to 0.5; further details of the classification process
are available in Pu et al. [5]. We used aerial images because they have been applied for
riparian vegetation delineation since the 1930s and provide high quality riparian vegetation
coverage information [36]. With excellent spatial resolution, repeated temporal sampling,
and no access cost, NAIP images are a prime candidate to analyse riparian vegetation
coverage in the United States. The random forest classifier [37] was selected based on
prior riparian vegetation delineation research by Hayes et al. [38] that successfully utilized
this classifier for NAIP images. The riparian vegetation classification used 900 randomly
sampled reference pixels manually labelled as either vegetation or non-vegetation class
through photo interpretation of the NAIP image. The photo interpretation class was
assigned through agreement of two trained photo-interpreters. Additionally, we used
field observations and Google Earth Street images to validate manual interpretations for
approximately half of the reference pixels. The output of the random forest classifier
provided a preliminary riparian vegetation layer. As a second processing step, we located
and removed all agricultural vegetation. Agricultural fields are a large source of nonpoint
source pollution in the study area and are the largest source of phosphorus in the Genesee
River [39]. Thus, we excluded agricultural vegetation because it does not provide key
benefits such as filtering pollutants and trapping sediments. We used a combination of
the multi-band NDVI) and NIR band texture (local Geary’s C, (Equation (3))) to remove
agricultural vegetation.

Ci = ∑
j

wij
(
zi − zj

)2 (3)

where zi is the NIR response at location i, zj is the NIR response at location j, wij are the
elements of the spatial weights matrix computed as the distance between i and j. Selection
of threshold values for NDVI and local Geary’s C were based on trial-and-error testing
using randomly selected pixels across the study area. We ultimately utilized NDVI > 0 and
local Geary’s C > 200 to separate agricultural and non-agricultural vegetation.

2.4. Analysis Design
2.4.1. Accuracy Assessment

We established a framework to assess riparian vegetation delineation accuracy by
considering accuracy of both channel boundary delineation and riparian vegetation classifi-
cation. We used conventional confusion matrices [40] for pixel-based accuracy assessment
of channel boundary delineation (water vs. non-water) and riparian vegetation classifi-
cation (vegetation vs. non-vegetation). Pixel-based accuracy was expressed in terms of
overall accuracy (OA) as well as class producer’s accuracy (PA) and user’s accuracy (UA).
An object-based approach [41] was also used to assess the difference between manually
delineated reference channels and those generated by the automated delineation procedure.
Object-based accuracy was expressed in terms of distance between the automatically and
manually delineated channel boundaries.

Channel boundary delineation pixel-based accuracy considered the PA and UA for
the water class. Overall accuracy and the non-water class statistics are heavily impacted by
the area of the search zone; that is, extending the analysis areas will increase the amount
of non-water areas, thus likely artificially increasing overall and non-water delineation
accuracy. Since class-based accuracy statistics (UA and PA) for the water class do not
change with area variations of the search zone, we focused on these statistics generated
from within 200 m of the NHD river centreline. The 200 m zone was selected because it
captured the maximum stream width across the study areas. Reference river channel was
derived at a scale of 1:1000 with heads up digitizing of the NAIP images in ArcMap.
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A second measure of delineation accuracy of the channel boundary used an object-
based approach. According to Radoux and Bogaert [41] and Kucharczyk et al. [42], there
is no standard approach to assess or estimate errors in object delineation. Positional
accuracy can be expressed using point-based measures, e.g., root mean square error [17], or
through surface-based methods [43]. Surface-based methods treat a delineated polygon of
interest as an entity that is compared against a reference polygon. We selected an approach
that has previously been utilized to estimate boundary error [42–44]. We calculated the
proportion of the mapped channel area within variable-size buffers established around a
manually delineated reference channel. The buffer distance started at 1 m, and 5 m, and
then extended to 30 m in 5 m intervals. We then estimated the size of the buffer needed to
encompass 50% of the mapped channel area and report this object-based channel boundary
offset distance (D50).

Accuracy of the riparian vegetation classification was quantified using 5000 visually
interpreted pixels selected by simple random sampling within the 90 m riparian zone.
Reference pixels were derived at a scale of 1:1000 with heads up digitizing of the NAIP
images in ArcMap. Labelling of vegetation and non-vegetation pixels used the NAIP
image bands and derived vegetation indices in conjunction with auxiliary datasets, which
included United States Census Bureau Places and Urban Area dataset for identifying po-
tential non-vegetation pixels, and New York State Park boundaries for verifying vegetated
pixels. An independent photo interpreter who had no role in producing the map products
obtained the reference datasets used to perform the validation. Accuracy metrics and
accompanying standard errors were estimated using equations from Olofsson [45].

2.4.2. Factors Impacting Accuracy

We also considered potential causes of inaccuracy in both channel boundary delin-
eation and riparian vegetation classification to guide future efforts to improve accuracy of
riparian vegetation delineation. We explored two factors for channel boundary delineation
(stream order and shadows) and three factors for riparian vegetation classification (land
use, width of the riparian zone, and shadows). Stream order measures the placement of a
stream within the tributary hierarchy [46]. We considered this factor because higher stream
orders generally have greater stream width, which is expected to increase channel boundary
detection accuracy [47]. Several approaches for labelling stream order have been proposed,
with the method developed by Strahler [48] still popular. We determined stream order
using the RivEX tool, which was originally developed by Gleyzer et al. [49] using Strahler’s
stream ordering method. We used this ArcMap-based plugin to segment the rivers in the
two study areas by labelling stream order based on the given NHD stream centerline. We
generated confusion matrices to assess the impact of stream order on accuracy.

Land use was evaluated to determine if variations in riparian vegetation coverage
associated with different land use patterns impact vegetation classification accuracy. Such
a hypothesis was supported by a previous study by Hollenhorst et al. [16]. Within the 90 m
fixed width riparian zone, we manually identified land use in the NAIP imagery using
three classes: developed, natural, and agriculture. Census data supported delineating areas
of developed land use, while NYS park boundaries assisted in mapping natural land use.
We generated confusion matrices to access the impact of land use on accuracy.

Width of riparian zone was evaluated as another influential factor that may impact
riparian vegetation classification accuracy. Hollenhorst et al. [16] reported that larger
riparian zone width led to higher overall accuracy, which we explored in this study. We
used three buffer sizes (30 m, 60 m and 90 m), and selected sample pixels within each buffer
size to generate confusion matrices to determine the impact of fixed riparian zone width
on vegetation classification accuracy.

Shadows have long been reported to impact mapping accuracy in various applica-
tions [18], and we explored whether they may influence both channel boundary delineation
and riparian vegetation classification accuracy. We considered shadows caused by chang-
ing illumination due to objects (e.g., trees or buildings) and topography (e.g., hills or
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valleys). We identified areas of shadows using the modified C∗
3 (Equation (4)) index

method developed by Besheer and Abdelhafiz [50].

C∗
3 = arctan

(
Blue

max(Green, Red, NIR)

)
(4)

Their method identifies shadowed regions based on the inflection point in the his-
togram of C∗

3 values after masking water regions and yielded above 94% accuracy in areas
with various land cover compositions. We determined where the manually delineated
channel fell within shadowed regions and generated confusion matrices separately for
shaded and illuminated areas to consider the impact of image shadows on both channel
boundary and riparian vegetation delineation accuracy. We did not need to apply a water
mask because we focused exclusively on the previously identified riparian zone.

3. Results

We delineated channel boundaries and classified riparian vegetation at the Genesee
River and Stockport and Kinderhook Creek sites (Table 1), detecting channel boundaries
up to 5th order streams for both study sites. Figures 3 and 4 show examples of delineated
channel boundary and classified riparian vegetation, respectively. Coverage of shadow
within the fixed (90 m) width riparian zone was 5% at Genesee River and 20% at Stockport
and Kinderhook Creek. Computational processing time at Genesee River was 31 min for
channel boundary delineation and 3 min for riparian vegetation classification; Stockport
and Kinderhook Creek processing times were 12 min (channel boundary delineation)
and 1 min (riparian vegetation classification). The majority of personnel time (8 days for
Genesee River and 5 days for Stockport and Kinderhook Creek) was spent in generating
reference data through manual delineation of channel boundaries and manual classification
of vegetation vs. non-vegetation pixels. Manual post processing to enhance the automatic
delineation of channel boundaries (e.g., removing bridge crossings) took an additional day.
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Table 1. Summary of area within the channel and covered by riparian vegetation for the Genesee
River and Stockport and Kinderhook Creek sites.

Stream Total Area within 90 m
Riparian Zone (km2)

Area within Channel
Boundaries (km2)

Area of Riparian
Vegetation (km2)

Genesee River 43.88 9.71 22.51

Stockport and
Kinderhook Creek 12.86 1.91 10.50

3.1. Channel Boundary Delineation Accuracy

UA and PA for the water class in the channel boundary delineation were generally
above 80% for both sites, with UA for shadowed regions in the smallest channels (5th order)
being the only exception (Table 2). The object-based accuracy assessment revealed that the
buffer distance from the reference channel that contained at least 50% of the delineated
channel area was generally less than 5 m. Larger streams (i.e., higher stream order) had
higher UA, and generally higher PA, though the highest PA at the Genesee River site was
for the 6th order streams. Presence of shadow had a minor (less than 3%) influence on both
PA and UA. The object-based channel boundary offset distance decreased up to 3 m when
shadowed areas were removed from the analysis.
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Table 2. Channel boundary delineation accuracy for Genesee River (GR) and Stockport and Kinder-
hook Creek (SKC) grouped by stream order and presence of image shadow. Expanded object-based
accuracy assessment results are provided in the Supplementary Materials (Figures S1 and S2).

Stream
Order

Shadow
Present

Water Class Object Based

UA (%) PA (%) D50 (m)

GR SKC GR SKC GR SKC

5th
Yes 76 85 86 81 3.5 3.1
No 75 85 87 82 3.2 1.2

6th
Yes 83 96 91 92 5.2 1.5
No 82 96 91 95 3.0 0.3

7th
Yes 95 NA 80 NA 3.5 NA
No 94 NA 83 NA 0.2 NA

NA: Not applicable (no 7th order streams at SKC). D50: distance from reference channel to encompass 50% of
mapped channel.

3.2. Riparian Vegetation Classification Accuracy

Overall accuracy of the vegetation vs. non-vegetation classification within the 90 m
riparian zone was 87% for the Genesee River (Table 3) and 96% for the Stockport and
Kinderhook Creek (Table 4) sites. UA was higher for the vegetation class (96–98%) than
non-vegetation (75–86%), while the reverse was true for PA (80–97% and 90–96% for vege-
tation and non-vegetation, respectively). Tables 3 and 4 also summarizes the classification
accuracy for three different land use types (agriculture, developed, and natural) and for
three riparian zone widths (30 m, 60 m, and 90 m). Developed land use had the lowest OA
(79–94%), while agricultural and natural land use OAs were higher (88–98%). Vegetation
classification accuracy for the three riparian zone widths (30 m, 60 m, and 90 m) had small
differences (average of 3%) in overall and class accuracies. In contrast with the channel
delineation accuracy, removing regions with shadows from the riparian vegetation clas-
sification did not substantially change the overall classification accuracy at the Genesee
River site, though there were larger differences in the class statistics, with shaded areas of
vegetation tending to have lower UA and PA (Table 3). A larger proportion of the Stockport
and Kinderhook Creek site was shaded but while overall accuracy at that site was lower
in the shaded areas (91%) compared to the fully illuminated areas (97%), there was little
difference compared to the OA for all regions (96%) (Table 4).

Table 3. Riparian vegetation classification accuracy of riparian zone along Genesee River characterized by land use and
image shadow presence (full confusion matrices are provided in Table S1).

RZ Width (m) Land Use Shadow/No
Shadow

Overall Map (%) Vegetation (%) Non-Vegetation (%)

OA (SE) UA (SE) PA (SE) UA (SE) PA (SE)

90 All types Both 87 (1) 96 (0) 81 (1) 76 (1) 95 (1)
90 Agriculture Both 88 (1) 96 (0) 82 (1) 79 (1) 95 (1)
90 Developed Both 79 (2) 96 (1) 67 (2) 66 (3) 96 (1)
90 Natural Both 88 (1) 98 (1) 85 (1) 68 (3) 95 (2)
90 All types No Shadow only 87 (1) 97 (0) 82 (1) 74 (1) 95 (1)
90 All types Shadow only 88 (2) 67 (17) 19 (6) 89 (2) 98 (1)
60 All types All areas 87 (1) 97 (0) 82 (1) 75 (1) 95 (1)
30 All types All areas 87 (1) 97 (1) 83 (1) 74 (2) 95 (1)

RZ: Riparian Zone, OA: Overall Accuracy, UA: User’s Accuracy, PA: Producer’s Accuracy and SE: Standard Error.
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Table 4. Riparian vegetation classification accuracy riparian zone along Stockport and Kinderhook Creeks characterized by
land use and image shadow presence (full confusion matrices are provided in Table S2).

RZ Width
(m) Land Use Shadow/No

Shadow

Overall Map (%) Vegetation (%) Non-Vegetation (%)

OA (SE) UA (SE) PA (SE) UA (SE) PA (SE)

90 All types Both 96 (0) 98 (0) 97 (0) 85 (1) 91 (1)
90 Agriculture Both 95 (0) 97 (0) 96 (0) 85 (1) 91 (1)
90 Developed Both 94 (1) 96 (2) 94 (1) 90 (3) 93 (3)
90 Natural Both 98 (0) 99 (0) 99 (0) 67 (6) 80 (5)
90 All types No Shadow only 97 (0) 99 (0) 96 (0) 84 (1 97 (1)
90 All types Shadow only 91 (1) 92 (1) 98 (1) 86 (3) 62 (3)
60 All types All areas 96 (3) 98 (0) 97 (0) 84 (2) 87 (1)
30 All types All areas 95 (1) 97 (1) 97 (0) 77 (3) 72 (3)

RZ: Riparian Zone, OA: Overall Accuracy, UA: User’s Accuracy, PA: Producer’s Accuracy and SE: Standard Error.

4. Discussion
4.1. Importance of Considering Channel Delineation Accuracy

To our knowledge, no prior study has reported both channel boundary delineation
and vegetation classification accuracy when delineating riparian vegetation. However,
our results show both components influence the quality of riparian vegetation delineation.
We found that 50% of automatically delineated river channel polygons could be up to
5 m away from the corresponding reference channel polygon. In a fixed riparian zone
framework, riparian buffers are generated directly from the delineated channel boundary,
thus positional inaccuracy in the river channel propagates to inaccurate riparian buffer
zones and ultimately produces inaccurate maps documenting the location and coverage of
riparian vegetation. Positional accuracy of riparian vegetation is a critical requirement for
aiding field-based riparian management and restoration efforts [51]. Inclusion of channel
boundary accuracy is especially important in the fixed width riparian zone framework.
In a variable width riparian zone framework, accuracy of channel boundary delineation
may be replaced by DEM accuracy [19]. However, we still lack convenient and widespread
access to high quality DEM. Quantification of the accuracy of these products is still under
active development [52], and may not be applicable across broad scales. Thus, channel
boundary accuracy from passive imagery still remains an issue of concern, especially given
the higher cost required to acquire lidar-derived DEMs [53].

Accurately detecting channel boundaries is a critical concern for riparian vegetation
studies. However, channel boundary mapping accuracy is also important for other studies
that are related to channel margins, such as lateral channel migration studies [17]. Donovan
et al. [17] and Lea and Legleiter [54] recently introduced new frameworks to assess uncer-
tainty. However, both focused on specific issues, rather than developing broadly applicable
techniques. Donovan et al. [17] assessed producer’s error in the manual delineation pro-
cess, whereas Lea and Legleiter [54] addressed image registration, which is particularly
relevant in change studies that utilize multiple images of a location [55]. While the accuracy
of manual digitization is important, manual approaches have practical limitations and
cannot be applied over large areas. Consequently, a broader focus on uncertainty for
semi-automatic or automatic channel boundary mapping accuracy is needed, especially
in the context of using Google Earth Engine [29]. Our approach addresses this issue by
demonstrating a method to assess accuracy in semi-automatically or automatically mapped
channel boundaries through applying a well-established map accuracy approach [56] in
conjunction with an object-based accuracy assessment [41].

4.2. Factors Impacting Channel Boundary Delineation and Riparian Vegetation
Classification Accuracy
4.2.1. Stream Order Impact

Stream order had moderate impact on channel boundary delineation accuracy. The
larger river channels associated with the higher stream order increased the user’s accuracy
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and channel boundary delineation accuracy while decreasing producer’s accuracy (Table 2).
The decrease in the user’s accuracy and boundary accuracy in the narrower channels could
be associated with the greater influence of overhanging vegetation [17]. Future riparian
vegetation delineation studies could focus greater effort on improving smaller stream order
channel boundary delineation accuracy, which would offer an efficient way to improve the
overall accuracy of the entire river channel boundary delineation. Such efforts may utilize
recently published methods that incorporate lidar and deep learning models to improve
channel boundary delineation accuracy in smaller streams [57].

4.2.2. Land Use and Riparian Width Impact

Land use impacted the vegetation vs. non-vegetation classification accuracy cor-
roborating the results of Smith et al. [58] and Tran et al. [59]. Our results confirm prior
studies that found regions with developed land use had lower OA than agricultural and
natural areas, possibly due to the more complex nature of developed regions. Our results
also confirm the findings of Hollenhorst et al. [16] regarding higher heterogeneity of land
cover types decreasing riparian vegetation delineation accuracy. In contrast with Hol-
lenhorst et al. [16]’s study, which used manual interpretation of aerial photos, we used a
semi-automatic approach that increased the efficiency of riparian vegetation classification.

4.2.3. Image Shadow Effects

Shadows in imagery have long been reported to impact accuracy in mapping ap-
plications [18]. Our study found that image shadows did influence channel boundary
delineation, with the channel more challenging to define accurately in shaded regions.
There were also impacts on riparian vegetation classification with overall accuracy between
shaded and fully illuminated regions varying by as much as 5%. However, this did not
have a practical influence on classification accuracy. The Genesee River site had only
a 2% coverage of shaded pixels and including these shaded regions did not negatively
impact overall accuracy of the classification. With 20% coverage of shadow at the Stockport
and Kinderhook site, inclusion of shaded areas still only led to a small (1%) decrease in
overall map accuracy. The reduced classification accuracy in shaded regions may be a more
significant issue in areas where the extent of shadow in an image is greater.

4.2.4. Future Work

Abood et al. [35], Holmes and Goebel [19], and Salo and Theobald [10] applied vari-
able width riparian zone definitions and methods to delineate riparian zone vegetation.
Variable width riparian zone mapping processes typically rely on high spatial resolution
DEMs for delineation of riparian zones. Such reliance limits wider adoption of these ap-
proaches due to restricted availability—both spatially and temporally—of DEMs with pixel
size ≤ 1 m. Due to these limitations, there is a continued need for fixed width riparian zone
delineation methods to support analysis across various scales. As high spatial resolution
DEMs become more widely available, assessment of the quality of variable width riparian
zone mapping approaches will need to address the accuracy of the DEM used. Future
work should compare riparian vegetation delineation accuracies using various riparian
zone definitions.

The channel boundary delineation and accuracy quantification methods developed in
this article can be applied to other fields of study that rely on accurate channel boundary
data, such as the study of planform channel migration rates. Current methods to delin-
eate river channels based on remotely sensed data are still very much reliant on manual
mapping approaches [54,60]. There are some automatic channel delineation approaches,
but many of these rely on methods that are not readily available, or do not incorporate
rigorous map accuracy quantification [17]. The approach applied in this study improves
upon prior methods in terms of semi-automatically delineating and assessing channel
boundary accuracy.
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5. Conclusions

This study used a semi-automatic approach to delineate river channel boundaries and
classify riparian vegetation using a freely available public dataset (NAIP) and cloud-based
technology (Google Earth Engine). The subsequent evaluation holistically quantified the
accuracy of riparian vegetation delineation by including assessment of both channel bound-
ary and riparian classification accuracy and demonstrated that both elements are critical in
terms of comprehensively understanding the quality of riparian vegetation maps. Through
our analysis, we also considered factors that can impact channel boundary and riparian
vegetation classification accuracy. We found stream order impacted channel boundary
delineation accuracy while land use and riparian zone width both impacted the riparian
vegetation classification accuracy. Shadowed regions created a greater challenge for chan-
nel delineation accuracy and could significantly impact riparian delineation processes,
particularly in steep topography or if imagery is acquired at lower sun elevation angles
leading to greater differential illumination.

Stakeholders need a straightforward means to delineate river channel boundaries
and riparian vegetation extent while assessing accuracy of both components to effectively
use remotely sensed data to map riparian vegetation. The procedures established in this
study highlight factors that influence the quality of riparian characterization and provide
a means to conduct riparian vegetation mapping and accuracy assessment that can be
applied across other regions and using other datasets.
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