Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning
Abstract
:1. Introduction
Study Site
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wahl, M. (Ed.) Marine Hard Bottom Communities: Patterns, Dynamics, Diversity, and Change; Springer Ecological Studies: Dordrecht, The Netherlands; New York, NY, USA, 2009; Volume 206, pp. 1–420. [Google Scholar]
- McArthur, M.; Brooke, B.; Przeslawski, R.; Ryan, D.; Lucieer, V.; Nichol, S.; McCallum, A.; Mellin, C.; Cresswell, I.; Radke, L. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 2010, 88, 21–32. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Watson, R. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irving, R. Summary Report of an Inter-Agency Workshop 26–27 March. In The Identification of the Main Characteristics of Stony Reef Habitats under the Habitats Directive; JNCC: Peterborough, UK, 2009; p. 42. [Google Scholar]
- Houziaux, J.-S.; Fettweis, M.; Francken, F.; van Lancker, V. Historic (1900) seafloor composition in the Belgian–Dutch part of the North Sea: A reconstruction based on calibrated visual sediment descriptions. Cont. Shelf Res. 2011, 31, 1043–1056. [Google Scholar] [CrossRef]
- Houziaux, J.-S.; Haelters, J.; Kerckhof, F. Facts from history: The former ecological value of gravel grounds in Belgian marine waters: Their importance for biodiversity, the relationship with fisheries. In ICES Marine Habitat Committee (2007), Report of the Study Group on Biodiversity Science (SGBIODIV), 9-11 May 2007 VLIZ, Belgium; ICES: Copenhagen, Denmark, 2007; Volume 8. [Google Scholar]
- Houziaux, J.-S.; Kerckhof, F.; Degrendele, K.; Roche, M.; Norro, A. The Hinder Banks: Yet an Important Area for the Belgian Marine Biodiversity? Belgian Science Policy: Brussels, Belgium, 2008; p. 259. [Google Scholar]
- Foveau, A.; Desroy, N.; Dewarumez, J.-M.; Dauvin, J.-C.; Cabioch, L. Long-term changes in the sessile epifauna of the Dover Strait pebble community. J. Oceanogr. Res. Data 2008, 1, 1–11. [Google Scholar]
- European Commission. Council Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (Text with EEA rele-vance). Off. J. Eur. Union 2008, 164, 19–40. [Google Scholar]
- European Commission. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. L 1992, 206, 7–50. [Google Scholar]
- Papenmeier, S.; Darr, A.; Feldens, P.; Michaelis, R. Hydroacoustic Mapping of Geogenic Hard Substrates: Challenges and Review of German Approaches. Geosciences 2020, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Anderson, J.T.; Holliday, D.V.; Kloser, R.; Reid, D.; Simrad, Y.; Brown, C.; Chapman, R.; Coggan, R.; Kieser, R.; Michaels, L.W.; et al. (Eds.) Acoustic Seabed Classification of Marine Physical and Biological Landscapes; International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer: Copenhagen, Denmark, 2007. [Google Scholar]
- Anderson, J.T.; van Holliday, D.; Kloser, R.; Reid, D.G.; Simard, Y. Acoustic seabed classification: Current practice and future directions. ICES J. Mar. Sci. 2008, 65, 1004–1011. [Google Scholar] [CrossRef]
- Diesing, M.; Mitchell, P.J.; O’Keeffe, E.; Gavazzi, G.O.; Bas, T.L. Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed. Remote. Sens. 2020, 12, 3398. [Google Scholar] [CrossRef]
- Kenny, A.J.; Cato, I.; Desprez, M.; Fader, G.; Schüttenhelm, R.T.E.; Side, J. An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J. Mar. Sci. 2003, 60, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications, 3rd ed.; Springer Praxis Books and Praxis Publishing: Berlin/Heidelnerg, Germany, 2010. [Google Scholar]
- Lurton, X.; Lamarche, G. Backscatter Measurements by Seafloor-Mapping Sonars. Guidelines and Recommendations. Available online: http://geohab.org/wpcontent/uploads/2014/05/BSWGREPORT-MAY2015.pdf (accessed on 11 May 2021).
- Lamarche, G.; Lurton, X. Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars. Mar. Geophys. Res. 2018, 39, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Beisiegel, K.; Darr, A.; Gogina, M.; Zettler, M.L. Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats. Mar. Pollut. Bull. 2017, 121, 5–15. [Google Scholar] [CrossRef]
- Sheehan, E.; Cousens, S.; Nancollas, S.; Stauss, C.; Royle, J.; Attrill, M. Drawing lines at the sand: Evidence for functional vs. visual reef boundaries in temperate Marine Protected Areas. Mar. Pollut. Bull. 2013, 76, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, E.V.; Stevens, T.F.; Gall, S.C.; Cousens, S.L.; Attrill, M.J. Recovery of a Temperate Reef Assemblage in a Marine Protected Area following the Exclusion of Towed Demersal Fishing. PLoS ONE 2013, 8, e83883. [Google Scholar] [CrossRef]
- Michaelis, R.; Hass, H.C.; Mielck, F.; Papenmeier, S.; Sander, L.; Ebbe, B.; Gutow, L.; Wiltshire, K.H. Hard-substrate habitats in the German Bight (South-Eastern North Sea) observed using drift videos. J. Sea Res. 2019, 144, 78–84. [Google Scholar] [CrossRef]
- Michaelis, R.; Hass, H.C.; Mielck, F.; Papenmeier, S.; Sander, L.; Gutow, L.; Wiltshire, K.H. Epibenthic assemblag-es of hard-substrate habitats in the German Bight (south-eastern North Sea) described using drift videos. Cont. Shelf Res. 2019, 175, 30–41. [Google Scholar] [CrossRef]
- van der Reijden, K.J.; Koop, L.; O’Flynn, S.; Garcia, S.; Bos, O.; van Sluis, C.; Maaholm, D.J.; Herman, P.M.; Simons, D.G.; Olff, H.; et al. Discovery of Sabellaria spinulosa reefs in an intensively fished area of the Dutch Continental Shelf, North Sea. J. Sea Res. 2019, 144, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Gazis, I.-Z.; Schoening, T.; Alevizos, E.; Greinert, J. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 2018, 15, 7347–7377. [Google Scholar] [CrossRef] [Green Version]
- Ierodiaconou, D.; Monk, J.; Rattray, A.; Laurenson, L.; Versace, V.L. Comparison of automated classification tech-niques for predicting benthic biological communities using hydroacoustics and video observations. Cont. Shelf Res. 2011, 31, S28–S38. [Google Scholar] [CrossRef]
- Ierodiaconou, D.; Schimel, A.C.G.; Kennedy, D.; Monk, J.; Gaylard, G.; Young, M.; Diesing, M.; Rattray, A. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Mar. Geophys. Res. 2018, 39, 271–288. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F. Evaluation of seabed mapping methods for fine scale classification of extremely shallow benthic habitats—Application to the Venice La-goon, Italy. Estuar. Coast. Shelf Sci. 2016, 170, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Janowski, L.; Trzcinska, K.; Tegowski, J.; Kruss, A.; Rucinska-Zjadacz, M.; Pocwiardowski, P. Nearshore Benthic Habitat Mapping Based on Multi-Frequency, Multibeam Echosounder Data Using a Combined Object-Based Approach: A Case Study from the Rowy Site in the Southern Baltic Sea. Remote. Sens. 2018, 10, 1983. [Google Scholar] [CrossRef] [Green Version]
- Misiuk, B.; Lecours, V.; Bell, T. A multiscale approach to mapping seabed sediments. PLoS ONE 2018, 13, e0193647. [Google Scholar] [CrossRef] [Green Version]
- Diesing, M.; Coggan, R.; Vanstaen, K. Widespread rocky reef occurrence in the central English Channel and the implications for predictive habitat mapping. Estuar. Coast. Shelf Sci. 2009, 83, 647–658. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Herkül, K.; Peterson, A.; Paekivi, S. Applying multibeam sonar and mathematical modeling for mapping seabed sub-strate and biota of offshore shallows. Estuar. Coastal. Shelf. Sci. 2017, 192, 57–71. [Google Scholar] [CrossRef]
- Kågesten, G.; Fiorentino, D.; Baumgartner, F.; Zillén, L. How Do Continuous High-Resolution Models of Patchy Seabed Habitats Enhance Classification Schemes? Geosciences 2019, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Becker, L.R.; Bartholomä, A.; Singer, A.; Bischof, K.; Coers, S.; Kröncke, I. Small-scale distribution modeling of ben-thic species in a protected natural hard ground area in the German North Sea (Helgoländer Steingrund). Geo-Mar. Lett. 2020, 40, 167–181. [Google Scholar] [CrossRef]
- Veenstra, H. Gravels of the southern North Sea. Mar. Geol. 1969, 7, 449–464. [Google Scholar] [CrossRef]
- van Lancker, V.; Du Four, I.; Verfaillie, E.; Deleu, S.; Schelfaut, K.; Fettweis, M.; van den Eynde, D.; Francken, F.; Monbaliu, J.; Giardino, A.; et al. Management, Research and Budgetting of Aggregates in Shelf Seas Related to End-Users (Marebasse); Belgian Science Policy: Brussel, Belgium, 2007; p. 139. [Google Scholar]
- van Lancker, V.; Francken, F.; Kapel, M.; Kint, L.; Terseleer, N.; van den Eynde, D.; Hademenos, V.; Missiaen, T.; de Mol, R.; de Tre, G.; et al. Transnational and Integrated Long-Term Marine Exploitation Strategies (TILES): Final Report (BRAIN-be-Belgian Research Action through Interdisciplinary Networks); Belgian Science Policy: Brussels, Belgium, 2019; p. 75. [Google Scholar]
- TILES Consortium 2018. TILES Voxel model subsurface Belgian and southern Netherland’s part of the North Sea. Belspo Brain-be project TILES (Transnational and Integrated Long-term Marine Exploitation Strategies, BR/121/A2/TILES). Available online: https://odnature.naturalsciences.be/downloads/tiles/tiles_information_sheet_en.pdf (accessed on 11 May 2021).
- Deleu, S.; van Lancker, V.; van den Eynde, D.; Moerkerke, G. Morphodynamic evolution of the kink of an offshore tidal sandbank: The Westhinder Bank (Southern North Sea). Cont. Shelf Res. 2004, 24, 1587–1610. [Google Scholar] [CrossRef]
- Bostrom, C.; Pittman, S.; Simenstad, C.; Kneib, R.T. Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 2011, 427, 191–217. [Google Scholar] [CrossRef] [Green Version]
- Pittman, S.; Kneib, R.; Simenstad, C. Practicing coastal seascape ecology. Mar. Ecol. Prog. Ser. 2011, 427, 187–190. [Google Scholar] [CrossRef] [Green Version]
- van Lancker, V. Sediment and Morpho Dynamics of a Siliciclastic near Coastal Area, in Relation to Hydrodynamical and Meteorological Conditions: Belgian Continental Shelf. Ph.D. Thesis, Gent University, Ghent, Belgium, 1999. [Google Scholar]
- van den Eynde, D. Interpretation of tracer experiments with fine-grained dredging material at the Belgian Continental Shelf by the use of numerical models. J. Mar. Syst. 2004, 48, 171–189. [Google Scholar] [CrossRef]
- van Leeuwen, S.; Tett, P.; Mills, D.; van der Molen, J. Stratified and nonstratified areas in the North Sea: Long-term variability and biological and policy implications: NORTH SEA stratification regimes. J. Geophys. Res. Ocean. 2015, 120, 4670–4686. [Google Scholar] [CrossRef] [Green Version]
- Lanckneus, J.; van Lancker, V.; Moerkerke, G.; van den Eynde, D.; Fettweis, M.; de Batist, M.; Jacobs, P. Investigation of the Natural Sand Transport on the Belgian Continental Shelf (BUDGET). Available online: http://www.belspo.be/belspo/organisation/Publ/pub_ostc/Mn/Abstract/Abs17.pdf (accessed on 30 May 2019).
- van den Eynde, D.; de Sutter, R.; Haerens, P. Evolution of marine storminess in the Belgian part of the North Sea. Nat. Hazards Earth Syst. Sci. 2012, 12, 305–312. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 14688–1: 2017: Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 1: Iden-tification and Description; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Schimel, A.C.G.; Beaudoin, J.; Parnum, I.M.; Le Bas, T.; Schmidt, V.; Keith, G.; Ierodiaconou, D. Multibeam sonar backscatter data processing. Mar. Geophys. Res. 2018, 39, 121–137. [Google Scholar] [CrossRef]
- Malik, M. Sources and impacts of Bottom Slope Uncertainty on Estimation of Seafloor Backscatter from Swath Sonars. Geosciences 2019, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Lecours, V.; Devillers, R.; Edinger, E.N.; Brown, C.; Lucieer, V. Influence of artefacts in marine digital terrain models on habitat maps and species distribution models: A multiscale assessment. Remote. Sens. Ecol. Conserv. 2017, 3, 232–246. [Google Scholar] [CrossRef]
- Lecours, V.; Dolan, M.F.J.; Micallef, A.; Lucieer, V.L. A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol. Earth Syst. Sci. 2016, 20, 3207–3244. [Google Scholar] [CrossRef] [Green Version]
- Montereale-Gavazzi, G.; Roche, M.; Degrendele, K.; Lurton, X.; Terseleer, N.; Baeye, M.; Francken, F.; van Lancker, V. Insights into the Short-Term Tidal Variability of Multibeam Backscatter from Field Experiments on Different Seafloor Types. Geosciences 2019, 9, 34. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G. Development of Seafloor Mapping Strategies Supporting Integrated Marine Management. Application of Seafloor Backscatter by Multibeam Echosounders. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2019. [Google Scholar]
- Roche, M.; Degrendele, K.; Vrignaud, C.; Loyer, S.; Le Bas, T.; Augustin, J.-M.; Lurton, X. Control of the repeatability of high frequency multibeam echosounder backscatter by using natural reference areas. Mar. Geophys. Res. 2018, 39, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Urgeles, R.; Locat, J.; Schmitt, T.; Clarke, J.H. The July 1996 flood deposit in the Saguenay Fjord, Quebec, Canada: Implications for sources of spatial and temporal backscatter variations. Mar. Geol. 2002, 184, 41–60. [Google Scholar] [CrossRef]
- Hughes-Clarke, J.E.; Iwanowska, K.K.; Parrott, R.; Duffy, G.; Lamplugh, M.; Griffin, J. Inter-calibrating multi-source, multi-platform backscatter data sets to assist in compiling regional sediment type maps: Bay of Fundy. In Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference, Victoria, Canada, 5–8 May 2008. [Google Scholar]
- Lacharité, M.; Brown, C.; Gazzola, V. Multisource multibeam backscatter data: Developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Mar. Geophys. Res. 2018, 39, 307–322. [Google Scholar] [CrossRef]
- Misiuk, B.; Brown, C.; Robert, K.; Lacharité, M. Harmonizing Multi-Source Sonar Backscatter Datasets for Seabed Mapping Using Bulk Shift Approaches. Remote. Sens. 2020, 12, 601. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tran, M.; Siwabessy, J. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness. PLoS ONE 2016, 11, e0149089. [Google Scholar] [CrossRef]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.; Stewart, H.A.; Dove, D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Diesing, M.; Stephens, D. A multi-model ensemble approach to seabed mapping. J. Sea Res. 2015, 100, 62–69. [Google Scholar] [CrossRef]
- Freeman, E.; Frescino, T. ModelMap: Modeling and Map Production Using Random Forest and Stochastic Gradient Boosting. Available online: https://CRAN.R-project.org/package=ModelMap (accessed on 10 September 2021).
- Evans, J.S. spatialEco. R package version 1.3. 2021. Available online: https://github.com/jeffreyevans/spatialEco (accessed on 10 September 2021).
- Zvoleff, A. GLCM: Calculate Textures from Grey-Level Co-Occurrence Matrices (GLCMs). R Package Version 1. Available online: https://search.r-project.org/CRAN/refmans/glcm/html/glcm-package.html (accessed on 11 November 2021).
- Hijmans, R.J.; van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A. Raster: Geographic Data Analysis and Modeling, R package version 2.1-16; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Mar. Geodesy 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Kursa, M.; Rudnicki, W. Feature Selection with theBorutaPackage. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Horning, N. RandomForests: An algorithm for image classification and generation of continuous fields data sets. In Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS), Hanoi, Vietnam, 9–11 December 2010. [Google Scholar]
- Foveau, A.; Dauvin, J.-C. Surprisingly diversified macrofauna in mobile gravels and pebbles from high-energy hy-drodynamic environment of the ‘Raz Blanchard’ (English Channel). Reg. Stud. Mar. Sci. 2017, 16, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Huff, L.C. Acoustic Remote Sensing as a Tool for Habitat Mapping in Alaska Waters. In Marine Habitat Mapping Technology for Alaska; Reynolds, J.R., Greene, H.G., Eds.; Alaska Sea Grant, University of Alaska Fairbanks: Fairbanks, AK, USA, 2008; pp. 29–46. [Google Scholar]
- Rattray, A.; Ierodiaconou, D.; Womersley, T. Wave exposure as a predictor of benthic habitat distribution on high energy temperate reefs. Front. Mar. Sci. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Strong, J.A.; Clements, A.; Lillis, H.; Galparsoro, I.; Bildstein, T.; Pesch, R. A review of the influence of marine habitat classification schemes on mapping studies: Inherent assumptions, influence on end products, and suggestions for future developments. ICES J. Mar. Sci. 2019, 76, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.J.; Aldridge, J.; Diesing, M. Legacy data: How decades of seabed sampling can produce robust predic-tions and versatile products. Geosciences 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Anderson, F.E.; Stride, A.A. Offshore Tidal Sands-Processes and Deposits. Estuaries 1984, 7, 267. [Google Scholar] [CrossRef]
- Holme, N.A.; Wilson, J.B. Faunas Associated with Longitudinal Furrows and Sand Ribbons in a Tide-Swept Area in the English Channel. J. Mar. Biol. Assoc. U. K. 1985, 65, 1051–1072. [Google Scholar] [CrossRef]
- Deleu, S.; van Lancker, V. Geological setting of gravel occurrences on the Belgian part of the North Sea. In Management, Research and Budgeting of Aggregates in Shelf Seas Related to End-Users (Marebasse); Final Scientific Report; Belgian Science Policy Office: Brussels, Belgium, 2007; pp. 101–115. [Google Scholar]
- Montereale-Gavazzi, G.; Roche, M.; Lurton, X.; Degrendele, K.; Terseleer, N.; van Lancker, V. Seafloor change detection using multibeam echosounder backscatter: Case study on the Belgian part of the North Sea. Mar. Geophys. Res. 2018, 39, 229–247. [Google Scholar] [CrossRef]
- Proudfoot, B.; Devillers, R.; Brown, C.J. Integrating fine-scale seafloor mapping and spatial pattern metrics into marine conservation prioritization. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1613–1625. [Google Scholar] [CrossRef]
- Franz, M.; von Rönn, G.A.; Barboza, F.R.; Karez, R.; Reimers, H.-C.; Schwarzer, K.; Wahl, M. How Do Geological Structure and Biological Diversity Relate? Benthic Communities in Boulder Fields of the Southwestern Baltic Sea. Chesap. Sci. 2021, 44, 1994–2009. [Google Scholar] [CrossRef]
- Lucatelli, D.; Goes, E.R.; Brown, C.J.; Souza-Filho, J.F.; Guedes-Silva, E.; Araújo, T.C.M. Geodiversity as an in-dicator to benthic habitat distribution: An integrative approach in a tropical continental shelf. Geo-Mar. Lett. 2019, 40, 1–13. [Google Scholar]
- Schoening, T.; Jones, D.O.B.; Greinert, J. Compact-Morphology-based poly-metallic Nodule Delineation. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Šiaulys, A.; Vaičiukynas, E.; Medelytė, S.; Olenin, S.; Šaškov, A.; Buškus, K.; Verikas, A. A fully annotated imagery dataset of sublittoral benthic species in Svalbard, Arctic. Data Brief 2021, 35, 106823. [Google Scholar] [CrossRef]
- Jones, R.E.; Griffin, R.A.; Rees, S.C.; Unsworth, R.K. Improving visual biodiversity assessments of motile fauna in turbid aquatic environments. Limnol. Oceanogr. Methods 2019, 17, 544–554. [Google Scholar] [CrossRef] [Green Version]
- Sture, Ø.; Ludvigsen, M.; Aas, L.M.S. Autonomous underwater vehicles as a platform for underwater hyper-spectral imaging. In OCEANS 2017-Aberdeen, Proceedings of the IEEE OCEANS 2017 ABERDEEN, 19th, Aberdeen, UK, 19–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences 2018, 8, 63. [Google Scholar] [CrossRef] [Green Version]
Vessel and Campaign ID | Month-Year | Data Type | GT Data | Number of Image Stills |
---|---|---|---|---|
RV Belgica 2018-17 | Jul-2018 | MBES + GT | UV (n = 2); HG (n = 4 × 3 rep.) | n = 26 |
RV Belgica 2019-19 | Jul-2019 | MBES + GT | UV (n = 3); HG (n = 2 × 3 rep.) | n = 239 |
HV Ter Streep | Jun-2013 | MBES (only depth soundings) | n.a. | n.a. |
Investigated Key Parameters of the Selected Dataset of Still Underwater Images | ||
---|---|---|
Input | Parameter | Scale |
Free text | Still frame area (height × width) | Numerical (m2) |
Selection | Large boulders (>63 cm) ◊ | Numerical (cm Feret Ø; (1/0); area m2) |
Boulders (20–63 cm) ◊ | ||
Cobbles (6–20 cm) ◊ | ||
Coarse gravel (2–6 cm) ◊ | ||
Fine gravel (<2 cm) ◊ | ||
Selection | Community matrix * | Numerical/counts; species conspicuous features |
Selection | Substrate distribution pattern * | Categorical, predefined (i.e., dense/sparse/bare) |
MAE | MSE | RMSE | R2 | P | ρ | ||
---|---|---|---|---|---|---|---|
5.7 | 63 | 7.9 | 0.54 | 0.73 | 0.73 | ||
Mean | Q1 | Q2 | Q3 | Q4 | Q5 | SD | |
Observed | 10.1 | 0 | 0 | 6 | 20 | 38 | 11.7 |
Predicted | 10.4 | 0 | 3 | 7 | 19 | 25 | 8.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montereale Gavazzi, G.; Kapasakali, D.A.; Kerchof, F.; Deleu, S.; Degraer, S.; Van Lancker, V. Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning. Remote Sens. 2021, 13, 4608. https://doi.org/10.3390/rs13224608
Montereale Gavazzi G, Kapasakali DA, Kerchof F, Deleu S, Degraer S, Van Lancker V. Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning. Remote Sensing. 2021; 13(22):4608. https://doi.org/10.3390/rs13224608
Chicago/Turabian StyleMontereale Gavazzi, Giacomo, Danae Athena Kapasakali, Francis Kerchof, Samuel Deleu, Steven Degraer, and Vera Van Lancker. 2021. "Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning" Remote Sensing 13, no. 22: 4608. https://doi.org/10.3390/rs13224608
APA StyleMontereale Gavazzi, G., Kapasakali, D. A., Kerchof, F., Deleu, S., Degraer, S., & Van Lancker, V. (2021). Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning. Remote Sensing, 13(22), 4608. https://doi.org/10.3390/rs13224608