Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales
Abstract
Share and Cite
Gaffney, R.; Augustine, D.J.; Kearney, S.P.; Porensky, L.M. Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales. Remote Sens. 2021, 13, 4603. https://doi.org/10.3390/rs13224603
Gaffney R, Augustine DJ, Kearney SP, Porensky LM. Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales. Remote Sensing. 2021; 13(22):4603. https://doi.org/10.3390/rs13224603
Chicago/Turabian StyleGaffney, Rowan, David J. Augustine, Sean P. Kearney, and Lauren M. Porensky. 2021. "Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales" Remote Sensing 13, no. 22: 4603. https://doi.org/10.3390/rs13224603
APA StyleGaffney, R., Augustine, D. J., Kearney, S. P., & Porensky, L. M. (2021). Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales. Remote Sensing, 13(22), 4603. https://doi.org/10.3390/rs13224603