Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
2.2. Data
2.2.1. Landsat Time Series
2.2.2. Other Data
2.3. Method
2.3.1. RSEI Calculation
- Green Index
- Wet Index
- Dry Index
- Lst Index
2.3.2. A Transfer Matrix Represented by Sankey Graph
2.3.3. Correlation Analysis of Influencing Factors of Ecological Quality
2.3.4. RSEI Flow Chart
3. Results
3.1. Temporal and Spatial Distribution Quality in the Yellow River, Inner Mongolia Section
3.2. Analysis of the Current Ecological Quality of the Yellow River Basin, Inner Mongolia Section
3.3. Evaluation of Ecological Changes in Major Cities of the Yellow River Basin, Inner Mongolia Section
4. Discussion
4.1. Feasibility of RSEI in Assessing the Ecological Quality of the Yellow River Basin, Inner Mongolia
4.2. Influencing Factors of Ecological change in the Yellow River Basin, Inner Mongolia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Luo, P.; Su, F.; Zhang, S.; Sun, B. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Kamara, D.; Yang, Z.; Yusuf, A. Ecological geospatial monitoring and assessment of surface water environment using remote sensing ecological index model (RSEI) in Freetown, Sierra Leone, from 2010 to 2018. Glob. Sci. J. 2020, 12, 2320–9186. [Google Scholar]
- Duan, W.; Maskey, S.; Chaffe, P.; Luo, P.; He, B.; Wu, Y.; Hou, J. Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote Sens. 2021, 13, 1097. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Li, W.; Su, W.; Guo, R.; Liu, W. Spatio-temporal pattern and evolution trend of ecological environment quality in the Yellow River Basin. Acta Ecol. Sin. 2021, 41, 514. [Google Scholar]
- Han, X.; Atsushi, T.; Mitsuru, T.; Li, S. Effects of land-cover type and topography on soil organic carbon storage on Northern Loess Plateau, China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 326–334. [Google Scholar] [CrossRef]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, P.; Zhao, S.; Kang, S.; Wang, P.; Zhou, M.; Lyu, J. Control and remediation methods for eutrophic lakes in recent 30 years. Water Sci. Technol. 2020, 81, 1099–1113. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Huang, S.; Wu, C.; Kou, W. Ecological environment quality assessment of Xishuangbanna rubber plantations expansion (1995–2018) based on Multi-temporal Landsat imagery and RSEI. Geocarto Int. 2020, 1–23. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; He, Y.; Luan, H. Monitoring and assessment of ecological change in coastal cities based on RSEI. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Szewczak, K.; Łoś, H.; Pudełko, R.; Doroszewski, A.; Gluba, Ł.; Łukowski, M.; Rafalska Przysucha, A.; Słomiński, J.; Usowicz, B. Agricultural drought monitoring by MODIS potential evapotranspiration remote sensing data application. Remote Sens. 2020, 12, 3411. [Google Scholar] [CrossRef]
- Firozjaei, M.; Kiavarz, M.; Homaee, M.; Arsanjani, J.; Alavipanah, S. A novel method to quantify urban surface ecological poorness zone: A case study of several European cities. Sci. Total Environ. 2021, 757, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Wu, J. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2020, 40, 8461–8473. [Google Scholar]
- Huang, H.; Chen, W.; Zhang, Y.; Qiao, L.; Du, Y. Analysis of ecological quality in Lhasa Metropolitan Area during 1990–2017 based on remote sensing and Google Earth Engine platform. J. Geogr. Sci. 2021, 31, 265–280. [Google Scholar] [CrossRef]
- Hang, X.; Li, Y.; Luo, X.; Xu, M.; Han, X. Assessing the ecological quality of Nanjing during its urbanization process by using satellite, meteorological, and socioeconomic data. J. Meteorol. Res. 2020, 34, 280–293. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Qin, F. The improvement of ecological environment index model RSEI. Arab. J. Geosci. 2020, 13, 1–14. [Google Scholar]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Hang, X.; Luo, X.; Cao, Y.; Li, Y. Ecological quality assessment and the impact of urbanization based on RSEI model for Nanjing, Jiangsu Province, China. J. Appl. Ecol. 2020, 31, 219–229. [Google Scholar]
- Mu, D.; Luo, P.; Lyu, J.; Zhou, M.; Huo, A.; Duan, W.; Nover, D.; He, B.; Zhao, X. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J. Flood Risk Manag. 2020, 14, e12668. [Google Scholar] [CrossRef]
- Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the temporal and spatial changes of ecological quality in the Hami oasis based on RSEI. Sustainability 2020, 12, 7716. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Yang, J.; Wu, T.; Pan, X. Ecological quality assessment of Xiongan New Area based on remote sensing ecological index. Chin. J. Appl. Ecol. 2019, 30, 277–284. [Google Scholar]
- Hui, Y.; Ying, L.; Yao, L.; Yang, L. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index. IEEE Access 2019, 7, 51295–51311. [Google Scholar]
- Zhu, Q.; Guo, J.; Guo, X.; Chen, L.; Han, Y.; Liu, S. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Gonzalo, M.; Luis, G.; Julia, A.; Jordi, M.; Gustau, C. Multitemporal cloud masking in the Google Earth engine. Remote Sens. 2018, 10, 1079. [Google Scholar]
- Xu, H. Research on extracting water body information using Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 5, 589–595. [Google Scholar]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Yu, S.; Wang, F.; Qu, M.; Yu, B.; Zhao, Z. The effect of land use/cover change on soil erosion changeby spatial regression in Changwu county on the loess plateauin China. Forests 2021, 12, 1209. [Google Scholar] [CrossRef]
- Han, P.; Wang, Y.; Li, D. Responses to soil and water conservation in Hekouzhen-Longmen section in the middle reaches of the Yellow river. J. Basic Sci. Eng. 2020, 28, 505–521. [Google Scholar]
- Tian, Z.; Ren, Z.; Wei, H. Driving mechanism of the spatiotemporal evolution of vegetation in the Yellow River basin from 2000 to 2020. Environ. Sci. Available online: https://doi.org/10.13227/j.hjkx (accessed on 17 August 2021).
- Zhao, W.; Yan, T.; Ding, X.; Peng, S.; Chen, H.; Fu, Y.; Zhou, Z. Response of ecological quality to the evolution of land use structure in Taiyuan during 2003 to 2018. Alex. Eng. J. 2021, 60, 1777–1785. [Google Scholar] [CrossRef]
- Julio, N.; Karem, C.; Rachid, L. A novel index for assessment of riparian strip efficiency in agricultural landscapes using high spatial resolution satellite imagery. Sci. Total. Environ. 2018, 644, 1439–1451. [Google Scholar]
- Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ. Sci. Pollut. Res. 2020, 27, 15716–15728. [Google Scholar] [CrossRef]
- Xi, J. Address by general secretary Xijinping at the symposium on ecological protection and quality development of the Yellow River basin. Shanxi Water Resour. 2020, 9, 1–3. [Google Scholar]
- Noel, G.; Matt, H.; Mike, D.; Simon, I.; David, T.; Rebecca, M. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar]
- Bethany, M.; Arko, L.; Jagannath, A. Object-based random forest classify-cation of Landsat Etm+ and Worldview-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 46–55. [Google Scholar]
- Dong, J.; Xiao, X.; Menarguez, M.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhang, M.; Wu, B.; Xing, Q. Extraction of summer crop in Jiangsu based on Google Earth Engine. J. Geo-Inf. Sci. 2019, 21, 752–766. [Google Scholar]
- Zhi, Y. Quantitative Assessment of Groundwater and Surface Water Interactions in the Hailiutu River Basin, Erdos Plateau, China; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zha, X.; Luo, P.; Zhu, W.; Wang, S.; Lyu, J.; Zhou, M.; Huo, A.; Wang, Z. A bibliometric analysis of the research on Sponge City: Current situation and future development direction. Ecohydrology 2021, e2328. [Google Scholar] [CrossRef]
- Xi, J. The Construction of Beautiful China Needs to Continue to Explore the Systematic Management of Mountains, Rivers, Forests and Lakes, Grass Sand and Benefit the People’s Livelihood. Chinese Social Sciences Net. Available online: http://www.cssn.cn/ (accessed on 3 April 2021).
- Rudolf, G.; Luke, B.; Sander, P.; Robert, C.; Florence, B.; Leon, B.; Mike, C.; Neville, C.; Andrea, G.; Lars, H.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar]
- Huang, W.; Duan, W.; Chen, Y. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, N.; Luo, P.; Yang, J.; Zhang, J.; Lin, K. Spatiotemporal assessment of land marketization and its driving forces for sustainable urban–rural development in Shaanxi province in China. Sustainability 2021, 13, 7755. [Google Scholar] [CrossRef]
City | 2001 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Hohhot | 0.53 | 0.56 | 0.54 | 0.76 | 0.59 |
Baotou | 0.52 | 0.62 | 0.52 | 0.75 | 0.47 |
Wuhai | 0.24 | 0.30 | 0.37 | 0.29 | 0.28 |
Dongsheng | 0.50 | 0.60 | 0.38 | 0.45 | 0.55 |
Linhe | 0.62 | 0.77 | 0.55 | 0.78 | 0.69 |
Indicators | 2001 | 2005 | 2010 | 2015 | 2020 | Mean |
---|---|---|---|---|---|---|
NDVI | 0.628 | 0.643 | 0.692 | 0.662 | 0.664 | 0.658 |
Wet | 0.542 | 0.579 | 0.636 | 0.604 | 0.609 | 0.594 |
NDBSI | −0.319 | −0.357 | −0.327 | −0.400 | −0.407 | −0.362 |
Lst | −0.427 | −0.478 | −0.408 | −0.497 | −0.450 | −0.452 |
Contribution/% | 87.35 | 89.01 | 88.95 | 90.23 | 92.37 | 89.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. https://doi.org/10.3390/rs13214477
Gao W, Zhang S, Rao X, Lin X, Li R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sensing. 2021; 13(21):4477. https://doi.org/10.3390/rs13214477
Chicago/Turabian StyleGao, Wenlong, Shengwei Zhang, Xinyu Rao, Xi Lin, and Ruishen Li. 2021. "Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section" Remote Sensing 13, no. 21: 4477. https://doi.org/10.3390/rs13214477